

DOCUMENT CONTROL SHEET

Issued by	Hydrock Consultants Limited Northern Assurance Buildings 9-21 Princess Street Albert Square Manchester M2 4DN United Kingdom	T +44 (0)161 804 5550 E manchestercentral@hydrock.com www.hydrock.com					
Client	Ministry of Justice						
Project name	Garth Wymott 2						
Project title	Ground Investigation Report						
BIM reference	19851-HYD-XX-XX-RP-GE-0001						
Project reference	C-19851						
Date	21/04/2022	21/04/2022					

Document Production Record					
Issue Number	S2/P03	Name			
Prepared by		Rob Crookes MGeol (Hons) FGS; Russell Sumner BSc (Hons) CSci FGS			
Checked by		Martin Cross BSc MA MSc MBA PhD CEng FICE CGeol CSci CEnv SiLC RoGEP Adviser; Danny Hope BSc (Hons) MSc MCIWEM C.WEM CEnv SiLC			
Approved by		Danny Hope BSc (Hons) MSc MCIWEM C.WEM CEnv SiLC			

Document Revision Record					
Issue Number	Status	Date	Revision Details		
S2	P01	20/10/2021	First Issue		
S2	P02	14/12/2021	Updated foundation recommendations and gas risk assessment		
S2	P03	21/04/2022	Final Issue following completion of monitoring		

Hydrock Consultants Limited (Hydrock) has prepared this report in accordance with the instructions of the above-named Client, under the terms of appointment for Hydrock, for the sole and specific use of the Client and parties commissioned by them to undertake work where reliance is placed on this report. Any third parties who use the information contained herein do so at their own risk. Hydrock shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared or for use of the report by any parties not defined in Hydrock's appointment.

CONTENTS

EXEC	UTIVE SUMMARY	4
1.	INTRODUCTION	8
2.	PHASE 1 STUDY (DESK STUDY REVIEW AND FIELD RECONNAISSANCE)	11
3.	OUTLINE CONCEPTUAL MODEL	15
4.	GROUND INVESTIGATIONS	18
5.	GROUND INVESTIGATION RECORDS AND DATA	23
6.	GEOTECHNICAL ASSESSMENT	36
7.	GEO-ENVIRONMENTAL ASSESSMENT	46
8.	WASTE AND MATERIALS MANAGEMENT	61
9.	UNCERTAINTIES AND LIMITATIONS	67
10.	RECOMMENDATIONS FOR FURTHER WORK	
11.	REFERENCES.	
Table	2S	
	e 4-1: Investigation rationale	
	4-2: Summary of site works	
	e 4-3: Summary of monitoring installations	
	2 4-4: Geo-environmental analyses of soils	
	2.4-5: Geo-environmental analyses of waters	
	e 4-6: Summary of sample numbers for geotechnical tests e 5-1: Strata encountered	
	e 5-2: Visual and olfactory evidence of contamination - soils	
	25-3: Groundwater occurrence during the fieldwork	
	25-4: Groundwater level data summary	
	5-5: Infiltration test results	
	e 5-6: Range of ground gas data	
Table	s 5-7: Volume change potential	30
Table	5-8: PSD results summary	30
Table	5-9: Soil strength results and derived values	31
Table	5-10: Relative density results and derived values	32
Table	5-11: Summary of compressibility	33
	e 5-12: Compaction study results	
	25-13: CBR results and derived values	
	25-14: Aggressive chemical environment concrete classification	
	25-15: Intact rock strength results and derived values	
	e 6-1: Summary of Proposed Structures	
Table	e 6-2: Geotechnical parameters recommended for design of Geotechnical Category 1 Structures (EC7)	37

Table 6-3: Pre	Himinary earthworks assessment	35
Table 6-4: Red	commendations for Shallow Foundations	41
Table 6-5: Ind	icative Pile Capacity (Dirven and CFA round piles)	43
	emicals of potential concern for which further assessment is required (human health)	
	ual evidence of Asbestos Containing Materials	
	nmary of water quality risk assessment protocol	
	emicals of potential concern for which further assessment is required (controlled waters)	
	bund gas risk assessment	
Table 7-6: Res	sidual risks following risk evaluation	58
Figures		
Figure 5.1: Ur	ndrained shear strength versus depth summary	31
Figure 5.2: SP	T 'N' Value versus depth summary	32
Appendices		
Appendix A	Drawing	
Appendix B	Exploratory Hole Location Plan, Exploratory Hole Logs and Photographs	
Appendix C	Geotechnical Test Results and Geotechnical Plots	
Appendix D	Site Monitoring Data and Ground Gas Risk Assessment	
Appendix E	Contamination Test Results and Statistical Analysis	
Appendix F	Waste Assessment	
Appendix G	Preliminary Geotechnical Risk Register	
Appendix H	Plausible Source-Pathway-Receptor Contaminant Linkages	
Appendix I	Hydrock Methodologies	

Executive Summary

SITE INFORMATIO	DN AND SETTING
Objectives	Phase 1 Desk Study Report review and Ground Investigation Report
Client	Ministry of Justice
Site name and location	The site is located near Ulnes Walton, 4.0km south west of Leyland, close to Junction 28 of the M6 motorway (National Grid Reference 350560 E, 420800 N).
Proposed development	The proposed new prison is comprised of a number of blocks which will generally be of three to four storey reinforced concrete construction including a workshop, house blocks, kitchen building, central service hubs, entrance resource hub and support building, as well as several lightweight sub stations. It is proposed to relocate the pumping station in the north east of the site. As part of the proposed development a car park will be constructed in the south east of the site with a proposed SUDs Pond.
GROUND MODEL	
Desk study summary	The majority of site is currently tenanted farmland, with one other section being the former sports fields and pavilion within the north east part of the site of HMP Wymott. Historical mapping suggests that the site was predominantly agricultural land with a number of small ponds until the 1940's when two sets of rail tracks transect the north of the site and terminate adjacent to the north west boundary where it's understood a former ministry of defence explosive storage house. Historical mapping from the 1980s onward no longer records the explosive storage house. Between 1983 and 1984 HM Prison is recorded in the centre and south. It is not clear when the buildings in the north were appropriated for their current agricultural use. A building corresponding to the location of the current boiler house appears on mapping between 1900-1995. Buildings corresponding to the location of the current stables appear on mapping in 2006. A sewage pumping station is indicated in the east of the site on 2020 mapping, though the structure appears to have been present on mapping since the 1980's The previous desk study indicates a low risk and no further assessment is required with regard to UXO in relation to ground investigation. However, the E3P report states that the recommendations of the Brimstone UXO Study is the completion of a Stage 2 Detailed Risk Assessment for the proposed development works. The superficial geology comprises Glacial Till in the east and far west of the site, with Head deposits shown to be present in the central and northern areas on the BGS mapping. The solid geology comprises the Singleton Mudstone Member, which is part of the Sidmouth Mudstone Formation (itself part of the Mercia Mudstone Formation). The Glacial Till and Head deposits are classed by the Environment Agency as a Secondary Undifferentiated Aquifer and Secondary A Aquifer respectively. The Singleton Mudstone Member is classified as a Secondary B Aquifer. There are no recorded groundwater abstraction wells within 1 km of the site
Ground and groundwater conditions encountered by investigation	 The ground conditions as proven by the investigation(s) undertaken at the site comprise: Surface Cover— locally in BH107A bituminous bound surface between 0.00m and 0.10m below ground level (bgl), Topsoil — between 0.00m and 0.60m bgl, comprising slightly sandy clay, often slightly silty or slightly gravelly.

- 'General' Made Ground between 0.00m up to 1.60m bgl. Locally >3.45m bgl, comprising firm grey/brown sandy slightly gravelly clay. Gravel content of brick, siltstone, coal, mudstone and sandstone.
- 'Pond Infill' Made Ground between 0.00m and 1.40m bgl, comprising firm sandy gravelly clay or soft sandy slightly gravelly clay with a gravel content of concrete, brick, sandstone, mudstone, coal and limestone with rare fragments of timber, mental and plastic, and cobbles of concrete.
- 'Pond Infill' Natural between 1.40m and 3.20m bgl, comprising very soft greyish brown sandy clay with a moderate organic (humic) odour or very soft black and dark brown peaty clay with a moderate organic (humic) odour.
- Head between 0.10m up to 18.50m bgl, comprising firm to stiff brown clays, soft to firm sandy silty occasionally gravelly clays or loose to medium dense silty fine and medium sand.
- Glacial Till between 0.15m up to 23.50m bgl comprising at shallow depths firm to stiff reddish-brown clays and slightly sandy slightly gravelly clays. Where found at depth it was consistently stiff to very stiff reddish brown slightly sandy slightly gravelly clay.
- Singleton Mudstone Member between 23.50m unproven at 32.50m bgl comprising very weak to weak interbedded mudstones and siltstones.

Groundwater was encountered at depths between 1.00m bgl and 2.50m bgl during the investigation.

Water levels recorded post-fieldwork ranged from 0.24m bgl to 3.93m bgl (12.24m OD to 7.47m OD).

In general, shallow groundwater was encountered sporadically as perched on top of the Glacial Till or Head deposits at the interface within the Made Ground.

There were two deeper groundwater tables encountered. The first was within a deeper layer of sand deposits within the Head deposits at depths in the order of 8.50m to 15.50m bgl. This groundwater table was found under sub-artesian pressure rising to between 4.60m and 5.10m bgl. This groundwater table appears to be flowing from west to east towards Wymott Brook a tributary of the River Lostock. A second groundwater table was present at the Glacial Till/weathered Singleton Mudstone Member interface.

Conclusions of geotechnical assessment

Obstructions associated with former buildings, including foundations or floor slabs and services, should be anticipated.

Excavation to proposed founding depth generally should be readily achievable with standard excavation plant. Heavy duty excavation plant/breaking equipment may be required to excavate through the existing construction or concrete obstructions.

Trial pit faces were noted to remain generally vertical without collapse. The faces of shallow, near vertically sided excavations put down at the site are likely to remain stable for short periods of time.

Water seepages into excavations are likely to be adequately controlled by sump pumping. Foundations are recommended to comprise:

- Strip/trench fill/pad foundations for lightly loaded structures
- Piled foundations for three to four storey house blocks.

Allowable bearing capacity of between 50kN/m² and 100kN/m² should be available for strip/trench fill/pad foundations bearing onto the shallow firm cohesive soils of the Head deposits or Glacial Till. This is for outline design only and further geotechnical assessment is required for CAT 2 structures.

Deepening of foundations/heave protection is likely to be required to allow for the effects of

Suspended floor slabs are recommended because of the depth of medium shrinkage potential clay soils.

Suspended floor slabs over a void will be required within the influencing distance of trees. For pavement design a CBR of 2.5 % is recommended. Given the generally low CBRs (i.e., <2.5%) soil improvement will likely be required to achieve a target CBR of 2.5%.

Soakaway drainage is considered unsuitable for this site.

Design Sulphate Class - DS-2 and ACEC Class AC-2

GEO-ENVIRONMENTAL CONCLUSIONS

Conclusions of contamination Generic risk assessment

Human health:

- Hotspots for PAHs within the shallow Made Ground at CBR101, WS111E, WS118E and WS123E.
- Hotspot for petroleum hydrocarbons within WS106E between 0.80m and 1.00m bgl.
- Hard/cement type asbestos encountered within the Made Ground and also present at the surface to the east of the pavilion. Laboratory testing found no positive identification for non-visible asbestos loose fibres.

Plant growth:

• No risk posed to plant growth.

Controlled Waters:

• The site poses a low risk to controlled waters.

Ground gases or vapours:

• Low risk from ground gases, CS1 conditions apply.

Radon:

• The site is not in a Radon Affected Area.

Water supply pipes:

• The site is predominantly previously undeveloped, with brownfield soils associated with the land surrounding the existing prison. Assessment has indicated no exceedance of the threshold values in the greenfield part of the site. However, locally close to the existing prison, threshold values for petroleum hydrocarbons were exceeded specifically in WS106E, WS111E and WS118E at depths of a proposed pipe of 0.80m and 1.00m bgl. However, confirmation should be sought from the water supply company at the earliest opportunity.

Proposed mitigation measures

The mitigation measures proposed to remove unacceptable risks include:

- The excavation and replacement of the PAHs and petroleum hydrocarbon hotspots.
- hand picking of visible cement type asbestos encountered during the earthworks and disposal of site
- examination of soils below and around all potential point sources including stores of fuels or machinery within the existing farm buildings and excavation of impacted soils (as possible depending on site constraints)
- further investigation in the car park where the new boiler compound is proposed to ensure the bituminous bound hardstanding does not contain coal
- excavation of Made Ground and natural soils as required to allow construction with appropriate materials management and processing of excavated soils using a combination of excavation and stockpiling and screening of soils to leave the site at the level required for the installation of a working platform, pavement construction and to ensure natural soils remain at cover system formation level to remove the requirement for a cover system.
- Installation of Protectaline pipework.

The methodology for the remediation should be presented in a Remediation Strategy, which will need to be submitted to the warranty provider and the regulatory authorities for approval.

In addition, the production of a Materials Management Plan and its approval by a Qualified Person will be required to allow reuse of suitable material at the site.

Verification reports by a competent independent geo-environmental specialist will be required following completion of any remedial works.

Waste management

Excavated soils to be disposed of as waste, are likely to be classed as non-hazardous soils.

FUTURE CONSIDERATIONS

Further work

Following the ground investigation works undertaken to date, the following further works will be required:

- demolition asbestos survey;
- specialist UXO/UXB risk assessment in accordance with CIRIA Report C681 with regard to construction risk;
- supplementary ground investigation in the existing prison car park and assessment in accordance with ADEPT & CWF Guidance (August 2019) to fully assess potential bituminous bound pavement arisings with regards to the presence of coal tar and waste disposal;
- discussion and agreement with utility providers regarding the materials suitable for pipework;
- discussions with regulatory bodies and the warranty provider regarding the conclusions of this report;
- assessment of tree influence on foundations and design of foundations;
- discussions with piling Contractors regarding conclusions of this report and design of the piles;
- provision of geotechnical design for the Category 2 structures (earthworks and foundations);
- production of a Remediation Strategy and Verification Plan (and agreement with the regulatory bodies and the warranty provider);
- production of a Materials Management Plan relating to reuse of soils at the site;
- remediation and mitigation work; and
- verification of the earthworks, remediation and mitigation works.

This Executive Summary forms part of Hydrock Consultants Limited report number 19851-HYD-XX-XX-RP-GE-0001 and should not be used as a separate document.

1. INTRODUCTION

1.1 Terms of reference

In July 2021, Hydrock Consultants Limited (Hydrock) was commissioned by Pick Everard on behalf of the Ministry of Justice (the Client) to undertake a supplementary Phase 2 ground investigation at HMP Garth and Wymott, Leyland, Lancashire PR26 8NE.

The majority of site is currently tenanted farmland, with one other section within the former sports fields and pavilion in the north east part of HMP Wymott.

Hydrock understands that the redevelopment is to provide a new prison facility to accommodate 1,600 inmates. The proposed new prison is comprised of a number of blocks, which will generally be of three to four-storey reinforced concrete construction including a workshop, house blocks, kitchen building, central service hubs, entrance resource hub and support building, as well as several lightweight sub stations. It is proposed to relocate the pumping station in the north east of the site. As part of the proposed development a car park will be constructed in the south east of the site with a proposed SUDS pond. A proposed development layout (Pick Everard, 'Site block plan proposed planning', ref: 608623-0000-PEV-GHX011-22-DR-A-9100), is presented in Appendix A.

The works have been undertaken in accordance with Hydrock's proposal referenced (C-19851-FP-GE-0001.RevB issued 29 June 2021) and the Client's instructions to proceed (email dated 30 July 2021).

1.2 Objectives

The works have been commissioned to assist with the design of the development, specifically to identify ground conditions to facilitate design of buildings, car parking and site drainage.

The objective of the supplementary Ground Investigation is:

- to resolve uncertainties identified in the existing E3P Desk Study and Ground Investigation report by refining and updating the Ground Model, further determining geo-environmental and geotechnical site conditions and identifying key contamination risks by updating and finalising the Conceptual Model in accordance with the principles of LCRM;
- to identify geo-environmental mitigation requirements to enable development; and
- to provide preliminary geotechnical recommendations for design.

1.3 Scope

The site investigation is a supplementary Phase 2 Ground Investigation.

The scope of the Phase 2 Ground Investigation comprises:

- a ground investigation including trial pitting, soakaways, windowless sampling, cable percussive boring, rotary drilling to:
 - » obtain data on the ground and groundwater conditions of the site;
 - » allow collection of samples for geotechnical and chemical laboratory analysis;
 - » allow geotechnical field tests to be undertaken;
 - » install gas and groundwater wells;
- gas concentration and groundwater level monitoring;

- groundwater sampling;
- geotechnical and chemical laboratory analysis;
- updating of the preliminary Ground Model;
- completion of a geotechnical risk register;
- presentation of an initial geotechnical design recommendations;
- development of an updated Conceptual Site Model (CM), including identification of plausible pollution linkages;
- completion of a generic quantitative risk assessment of potential chemical contaminants to establish 'suitability for use' under the current planning regime;
- discussion of potential environmental liabilities associated with land contamination (soil, water and gas); and
- identification of outline mitigation requirements to ensure the site is 'suitable for use'.

1.4 Available information

The following documents, reports etc have been provided to Hydrock by the client for use in the preparation of this report:

- Pick Everard. 19/04/2021. 'Scope of Works for Supplementary Site Investigation, HMP Garth Wymott 2.' Ref. MC/EST/200799/17-3/S002 Issue Number 02;
- E3P. December, 2020. 'Phase I & II Geo-environmental Site Assessment, Albatross and Razorbill.' Ref. 14-451-R1-1; and
- Pick Everard, 14/04/2021. 'Site block plan proposed planning', ref: 608623-0000-PEV-GHX011-22-DR-A-9100_S2_P06.

The Client has commissioned or obtained assignment of the above documents and Hydrock is entitled to full reliance upon their contents.

The desk study information contained within the provided report (E3P, 2020) is summarised within Section 2. The content has been used to formulate the preliminary Conceptual Site Model as the basis for preparing the preliminary geo-environmental exposure model and the preliminary geotechnical hazard identification presented in Section 2.

1.5 Regulatory context and guidance

The investigation work has been carried out in general compliance with recognised best practice, including (but not limited to) BS 5930:2015, BS 10175:2011+A2:2017 and the AGS (2006) 'Good Practice Guidelines for Site Investigations'.

The geo-environmental section of this report is written in broad accordance with BS 10175:2011+ A2:2017, 'Land Contamination: Risk Management' (LCRM, 2019) and the AGS (2006) 'Good Practice Guidelines for Site Investigations'.

The methods used follow a risk-based approach, the first stage of which is a Phase 1 desk study and field reconnaissance, with the potential geo-environmental risk assessed qualitatively using the 'source-pathway-receptor contaminant linkage' concept to assess risk as introduced in the Environmental Protection Act 1990 (EPA, 1990). Potential geotechnical risks are also assessed.

Phase 2 comprises intrusive ground investigation work and testing. The factual information from Phase 1 and Phase 2 are used to develop the Conceptual Model (CM). This CM is based on a ground model of the site physical conditions and an exposure model of the possible contaminant linkages. The CM forms the basis for Generic Quantitative Risk Assessment (GQRA) in accordance with current guidelines. This GQRA might lead to more Detailed Quantitative Risk Assessment (DQRA).

Professional judgement is then used to evaluate the findings of the risk assessments and to provide recommendations for the development.

The geotechnical section of this report is prepared in general accordance with BS EN 1997-1+A1: 2013, BS EN 1997-2:2007 and BS 8004:2015. This report constitutes a Ground Investigation Report (GIR) as described in Part 2 of Eurocode 7 (BS EN 1997-2) (EC7). However, it is not intended to fulfil the requirements of a Geotechnical Design Report (GDR) as specified in EC7.

Where relevant the NHBC Standards (2021), have also been applied.

The geo-environmental and geotechnical aspects are discussed in separate sections. Throughout the report the term 'geotechnical' is used to describe aspects relating to the physical nature of the site (such as foundation requirements) and the term 'geo-environmental' is used to describe aspects relating to ground-related environmental issues (such as potential contamination). However, it should be appreciated that this is an integrated investigation and these two main aspects are inter-related. Designers should take all aspects of the investigation into account.

Remaining uncertainties and recommendations for further work are listed in Section 9 and Section 10.

Reference to the details of the approach and the methodologies adopted are provided in Appendix I.

2. PHASE 1 STUDY (DESK STUDY REVIEW AND FIELD RECONNAISSANCE)

2.1 Introduction

Hydrock has been provided with a combined Phase 1 and Phase 2 report for the site prepared by E3P (as detailed in Section 1). Hydrock generally agree with the findings of the Desk Study section and the following section is a summary of the pertinent information presented in the Desk Study section of that report, supplemented by additional information as required.

Hydrock has undertaken an updated field reconnaissance survey during the site investigation to visually assess potential geotechnical hazards, contaminant sources and receptors and ensure the site conditions as reported in the desk study are similar to current conditions.

2.2 Site location

The site is located near Ulnes Walton, 4.0km south west of Leyland, close to Junction 28 of the M6 motorway (National Grid Reference 350560 E, 420800 N).

The Site Location Plan (Hydrock Drawing 19851-HYD-XX-XX-DR-GE-0001) is presented in Appendix A.

2.3 Site description

The subject site is approximately 18 hectares; an irregular shaped relatively level parcel of land located at HM Wymott Prison in Ulnes Walton, Leyland. The south east sector is within the HM Wymott Prison site area, with the remainder of the site located to the north. HM Garth Prison is immediately west of site.

The land to the north of the prison forms part of a small farm holding that occupies the land with a number of agricultural buildings in the centre. The land surrounding the farm is separated into various paddocks for livestock. A series of sporadic semi-mature and mature trees are present across site, and a dense woodland area is present in the north west. A boiler house is present in the west and a sewage pumping station is present to the west of Pump House Lane. A farm building which is a former military store is located in the far east of the site, to the north of a large pond. An additional smaller pond is located in the north west corner of the site.

Within the prison boundary, to the east of the cell blocks, the site comprises a sports pitch and a shower/changing room block. Due to the coronavirus outbreak the fields had been left semi abandoned with the grass and obstacle course being overgrown. In the south east of the site a temporary coronavirus ward has been erected to allow prisoners to be segregated in the case of an outbreak within the prison.

Access to the northern sector is from Pump House Lane, off Willow Road. Access to the north west sector is via the HM Wymott Prison access roads. Access to the south east sectors is gained through HM Wymott Prison itself.

The Site Features Plan (Hydrock Drawing 19851-HYD-XX-XX-DR-GE-0002) is presented in Appendix A.

2.4 Site history

Historical mapping shows that up until the 1940s the site was predominantly agricultural land with a number of small ponds or post glacial feature kettle holes which were later infilled. Post 1940's two sets of rail tracks transect the north of the site and terminate adjacent to the north west boundary where it's understood a former ministry of defence explosive storage house. Historical mapping from the

1980s onward no longer records the explosive storage house. Between 1983 and 1984 HM Prison is recorded in the centre and south. It is not clear when the buildings in the north were appropriated for their current agricultural use. A building corresponding to the location of the current boiler house appears on mapping between 1900-1995. Buildings corresponding to the location of the current stables appear on mapping in 2006. A sewage pumping station is indicated in the east of the site on 2020 mapping, though the structure appears to have been present on mapping since the 1980's.

2.5 Geology

The geology of the site area is shown on British Geological Survey England and Wales Sheet 75 Preston, (Bedrock and Superficial Deposits), published in 2021. The superficial geology comprises Glacial Till in the east and far west of site, with Head Deposits shown to be present in the central and northern areas on the BGS mapping. The Glacial Till is described as clay to sandy clay, unsorted with common pebbles, cobbles and some boulders (Diamicton). The Head Deposits are described as rock fragments and pebbles in a clay to sand mix.

On the 1883 1: 63,360 Geological Survey of England and Wales Sheet 89NW (Preston, Kirkham, Chorley) Drift edition; the Glacial Till comprises Upper Boulder Clay, Sand and Gravels and Lower Boulder Clay. This map also refers to post-glacial deposits including peat to be present in the area.

The solid geology comprises the Singleton Mudstone Member, which is part of the Sidmouth Mudstone Formation (itself part of the Mercia Mudstone Formation).

The closest available BGS borehole records 0.4m of topsoil overlying clay and sand to the base of the borehole at 15.0m bgl.

A fault is shown on the BGS mapping 1.3km west of site, trending approximately northwest-southeast, with a downthrow to the east.

2.6 Hydrogeology

The Glacial Till and Head deposits are classed by the Environment Agency as a Secondary Undifferentiated Aquifer and Secondary A Aquifer respectively. The Singleton Mudstone Member is classified as a Secondary B Aquifer.

There are no recorded groundwater abstraction wells within 1 km of the site and the site is not in any Source Protection Zone.

There is no indication from the report of the risk of groundwater flooding.

2.7 Hydrology

A large fishing pond is present in the northeast of site, with a second smaller pond present in the west. There are several drainage ditches running across the site. There are no other pertinent water features within 250m of site.

Wymott Brook and River Lostock are present 607m west and 670m south of site respectively, both classified as 'C - Fairly Good' overall status under the Water Framework Directive.

The E3P report does not indicate whether there are any licensed surface water abstractions within 1km of the site.

2.8 Flood risk

The E3P report indicates the proposed development is predominantly located within a currently defined "Flood Risk Zone 1"; defined as land assessed as having less than 1 in 1,000 annual probabilities of river or sea flooding (< 0.1%). The west of the site is located in a Flood Zone 3 with a high probability of flooding; therefore, a Flood Risk Assessment will be required.

No further consideration of flood risk is undertaken in this report. Specialist flood risk advice should be sought with regard to drainage and flooding.

2.9 Mining or mineral extraction

The site is not located in a Coal Mining Reporting Area or Development High Risk Area; therefore, no further assessment is required.

The E3P report makes no comment on other mining or mineral extraction present or not on site or within the vicinity.

The site lies approximately 500m east of Hydrocarbon License Area PEDL024.

There are Mineral Planning Permissions, indicated as Ulnes Claypit, approximately 500m south west of site.

The risks to the site associated with mining or mineral extraction are considered to be low.

2.10 Natural ground instability

The E3P report indicates that the risk from Shrink-Swell Clay, Landslides, Collapsible Deposits and Running Sand is 'very low risk'. It also indicated there is 'no hazard' from Ground Dissolution and Compressible Ground.

2.11 Waste management

Potentially hazardous waste streams are unlikely to be generated at the site and none were observed during the preliminary site inspection.

There are no landfill sites within 250 m. The Envirocheck report lists potentially infilled ground relating to former water features on site. Historical mapping confirms the presence of infilled ponds on site.

2.12 Regulatory information

There are no pertinent regulatory entries, such as Pollution Incidents or Discharge Consents, listed within 250m of the site. Additionally, there are no active entries within the trade directory for industrial land uses within 500m.

2.13 Natural soil chemistry

The E3P report did not identify any significantly elevated naturally occurring elements that may present a risk to future site users.

2.14 Radon and ground gas

The previous desk study indicates that the site is in a Lower probability Radon Area where less than 1% of homes are estimated to be at or above the Action Level. Therefore, no radon protection measures are required for new buildings at this location in line with current guidance.

2.15 Unexploded ordnance (UXO)

The previous desk study indicates a low risk and no further assessment is required with regard to UXO in relation to ground investigation.

However, it also refers to a third-party report, which has not been made available to Hydrock. The Brimstone UXO Desk Study (report ref: PRA-20-1311, October 2020) states:

"During WWII, the Site remained open fields, however one explosives storage house (ESH) was built on Site with associated rail tracks (representing a small portion of the wider dispersed depot site). Additional tracks leading to other ESHs crossed the Site also."

The E3P report states that the recommendations of the Brimstone UXO Study is the completion of a Stage 2 Detailed Risk Assessment for the proposed development works.

3. OUTLINE CONCEPTUAL MODEL

3.1 Introduction

The outline Conceptual Model (oCM) incorporates evidence from the site walkover, the Desk Study and previous investigations carried out at the site. The formulation of an outline Conceptual Model is a key component of the LCRM methodology. The oCM incorporates a ground model of the site physical conditions and an exposure model of the possible contaminant linkages; it forms the basis for Generic Quantitative Risk Assessment (GQRA) in accordance with current guidelines.

3.2 Ground model

The preliminary ground model presented in Section 2.5 provides an understanding of the ground conditions and is the basis for preparing the preliminary geotechnical hazard assessment (Section 3.3) and the preliminary geo-environmental exposure model (Section 3.4).

3.3 Geotechnical hazard identification

3.3.1 Context

The preliminary geotechnical hazard identification has been undertaken in accordance with the general requirements of ICE/DETR Document 'Managing Geotechnical Risk' and the HE documents HD 41/15 and CD 622.

The following section sets out the identified geotechnical hazards and the development elements potentially affected (see Table J.1 in Appendix G for further information).

3.3.2 Plausible geotechnical hazards

Plausible geotechnical hazards identified at the site are:

- Uncontrolled Made Ground (variable strength and compressibility).
- Former infilled ponds.
- Soft / loose compressible ground (low strength and high settlement potential).
- Shrinkage / swelling of the clay fraction of soils under the influence of vegetation.
- Variable lateral and vertical changes in ground conditions.
- Attack of buried concrete by aggressive ground conditions.
- Obstructions.
- Existing below ground structures to remain (adjacent prison fence line).
- Shallow groundwater.
- Changing groundwater conditions.
- Loose Made Ground, leading to difficulty with excavation and collapse of side walls.

3.3.3 Potential development elements affected

Development elements potentially affected by geotechnical hazards are:

- Buildings foundations.
- Buildings floor Slabs

- Roads and pavements.
- Services.
- Construction staff, vehicles and plant operators.
- Concrete below ground.

Health and safety risks to site Contractors and maintenance workers have not been assessed during these works and will need to be considered separately during design.

The above plausible geotechnical hazards and development elements affected have been carried forward for investigation and assessment. The investigation is presented in Section 5 and the assessment is presented in Section 6.

3.4 Geo-environmental exposure model

3.4.1 Context

The preliminary exposure model is used to identify geo-environmental hazards and to establish potential pollution linkages, based on the source-pathway-receptor (SPR) approach.

A viable pollution linkage requires all the components of an SPR to be present. If only one or two are present, there is no linkage and no further assessment is required.

3.4.2 Potential contaminants

3.4.2.1 Potential on-site sources of contamination

Given the modern age of the electrical substation in the north of the site (post 1976), polychlorinated biphenyls were unlikely to have been used as heat transfer fluids or lubricants.

- Made Ground, associated with historical construction activities and imported fill, possibly including elevated concentrations of metals, metalloids, asbestos fibres, Asbestos Containing Materials, PAH and petroleum hydrocarbons (S01).
- Made Ground, potentially containing asbestos fibres and Asbestos Containing Materials from demolition of former farm or MOD structures (SO2).
- Made Ground, associated with infilled ponds or drainage ditches, possibly including elevated concentrations of metals, metalloids, asbestos fibres, Asbestos Containing Materials, PAH and petroleum hydrocarbons (S03).
- Hydrocarbon fuels and oils from the operation of former and current agricultural machinery on the site (S04).
- Various contaminants associated with possible historical MOD rail tracks and explosive store on site including heavy metals, volatile or semi volatile organic compounds, PAH's and hydrocarbon compounds- explosive compounds unlikely to be present in soils as there is no anecdotal evidence of mis-handling of explosive leading to an explosion on the site (S05).
- Contamination from sewage from the pumping station, potentially containing elevated heavy metals (S06).
- PAH's, heavy metals and inorganic compounds associated with the Boiler House on site (S07).
- Coal tar, potentially present in the bituminous bound pavements present in the form of roads, car parks, and pavements (S08).

- Ground gases (carbon dioxide and methane) from organic materials in deep Made Ground deposits, natural pond deposits or infilled pond deposits (S09).
- Hydrocarbon vapours from potential VOC and petroleum hydrocarbon spillages/leaks (S10).
- Asbestos within existing buildings (S11).

Given the modern age of the electrical substation in the north of the site (post 1976), polychlorinated biphenyls were unlikely to have been used as heat transfer fluids or lubricants.

3.4.2.2 Potential off-site sources of contamination

• Ground gases (carbon dioxide and methane) from made ground or organic materials in the infilled ponds in the vicinity of site (S12).

3.4.3 Potential receptors

The following potential receptors in relation to the proposed land use have been identified.

- People (neighbours, site end users) (R01).
- Development end use (buildings, utilities and landscaping) (RO2).
- Groundwater: Secondary A aquifer status of the Head, Secondary B aquifer status of the bedrock, Secondary Undifferentiated Aquifer status of the Glacial Till (R03).
- Surface water: on-site drainage ditch and ponds (RO4).

3.4.4 Potential pathways

The following potential pathways have been identified.

- Ingestion, skin contact, inhalation of dust and outdoor air by people (P01).
- Direct contact with substances deleterious to building materials e.g., VOCs (P02).
- Methane ingress via permeable soils and/or construction gaps (P03).
- VOC and petroleum hydrocarbon vapour ingress via permeable soils and/or construction gaps (P04).
- Root uptake by plant (P05).
- Migration of contaminant via leachate migration through the unsaturated zone in the Head or Glacial Till (P06).
- Migration of contaminant from the groundwater within the Made Ground/Head or Glacial Till to the groundwater within the Singleton Mudstone aquifer (P07).
- Surface water via overland flow (P08).
- Surface water via base flow from groundwater (P09).

Health and safety risks to site development contractors and maintenance workers have not been assessed as part of this study and will need to be considered separately.

The above sources, pathways and receptors have been considered as part of the Preliminary Risk Assessment in accordance with LCRM (2019), are considered to be plausible in the context of this site and have been carried forward for investigation and assessment. The investigation is presented in Section 5 and the assessment is presented in Section 0. An assessment of the Source – Pathway – Receptor linkages is undertaken following the assessment (Section 0) and is presented in Appendix H (Table K.1).

4. GROUND INVESTIGATIONS

4.1 Investigation rationale

The ground investigation rationale was dictated by the client based on the findings of the E3P Phase 1 & 2 combined risk assessment and is summarised in Table 4-1.

For the investigation rationale of the historical investigations, please refer to the E3P report referenced 14-451-R1-1.

Table 4-1: Investigation rationale

Location	Purpose
BH101 - BH109	To assess deeper ground conditions and to allow SPTs to be undertaken. To allow collection of samples for geotechnical characterisation. To allow collection of samples for contamination testing. Installation of gas and groundwater monitoring and sampling wells.
ВН106	To assess deeper ground conditions and to allow SPTs to be undertaken. To collect samples of deeper rockhead to undertake strength testing for pile design. To allow collection of samples for geotechnical characterisation. To allow collection of samples for contamination testing. Installation of gas and groundwater monitoring and sampling wells.
CBR101 - CBR124	To allow in-situ testing giving CBR values in order to assess shallow ground conditions for road and pavement design. Targeted at areas where these features will be present.
SA101 - SA106	To allow infiltration testing to occur to BRE 365.
WS101-WS207	To assess shallow ground conditions and to allow SPTs to be undertaken. To allow collection of samples for chemical testing and geotechnical characterisation. Targeted to investigate areas of potential contamination sources. Installation of gas and groundwater monitoring and sampling wells.

4.2 Constraints

Inclement weather and unexpected ground conditions were encountered. At BH107 thick concrete was encountered, necessitating relocation of the borehole. BH104 and BH108 were moved a few metres due to livestock and an overhead cable respectively. Soakaway testing could not be undertaken in SA105 or SA105A due to the presence of potential service bedding in SA105 and a redundant land drain in SA105A.

4.3 Site works

The fieldwork took place between 16 August and 09 September 2021 and is summarised in Table 4-2. The ground investigation locations were surveyed in using topographic survey quality GPS and are shown on the Exploratory Hole Location Plan (Hydrock Drawing 19851-HYD-XX-XX-DR-GE-0003) in Appendix B.

The logs, including details of ground conditions, soil sampling, *in situ* testing and any installations, are also presented in Appendix B.

The weather conditions during the Hydrock fieldwork varied between hot and sunny to mild with wind and heavy rain.

Table 4-2: Summary of site works

Activity	Method	No.	Depth Range* (m bgl)	In situ tests	Notes (e.g. installations)	
Drilling, Pitting and Probing						
Boreholes	Cable percussive	9	17.45- 23.50	SPTs Hand shear vane (HSV) in hand pits	63mm HDPE wells with gas taps in 7 no. holes	
	Rotary cored	1	32.50		Follow on in BH106	
	Windowless sampler	7	5.45		63mm HDPE wells with gas taps in 3 no. holes	
Trial pits	Machine (JCB 3X)	30	1.5	Hand shear vane (HSV)	Excavation for Soakaways and LWDs.	
Hand dig	Hand-excavated	3	0.30		Contamination Testing Zone	
E3P Drilling						
Boreholes	Windowless sampler	25	5.45	SPTs	63mm HDPE wells with gas taps in 6 no. holes	
Other in situ testing or monitoring						
CBRs	Hand held	24	0.25 - 0.80	Lightweight Deflectometer (LWD)	In CBR101-CBR124	
Soakaways	BRE 365	6	1.2 - 1.8	Infiltration	In SA101 - SA106	

^{*} Does not include locations terminated and relocated

Wells for monitoring groundwater levels and ground gas concentrations, and to facilitate the sampling of groundwater, were installed in a number of the windowless sampler and cable percussion boreholes. A summary of the monitoring well installations is presented in Table 4-3.

Table 4-3: Summary of monitoring installations

Location	Ground level (m OD)	Standpipe diameter (mm)	Screen top and base depth (m bgl)	Screen top and base elevation (m OD)	Strata targeted
Hydrock Install	ations				
BH101	10.49	50	6.0 to 20.0	4.49 to -9.51	Head and Glacial Till
BH103	10.98	50	5.0 to 20.0	5.98 to -9.02	Head and Glacial Till
BH105	10.42	50	3.0 to 20.0	7.42 to -9.58	Head and Glacial Till
BH106	13.16	50	14.0 to 26.0	-0.84 to -12.84	Glacial Till and Singleton Mudstone
BH107a	11.05	50	5.0 to 13.0	6.05 to -1.95	Head
BH108	11.40	50	3.0 to 12.0	8.4 to -0.6	Head
BH109	11.87	50	5.0 to 13.0	6.87 to -1.13	Head
WS102	11.84	50	0.5 to 3.0	11.34 to 8.84	Infilled and Natural Pond
WS103	14.21	50	0.5 to 2.50	13.71 to 11.71	Glacial Till
WS104	12.48	50	0.5 to 2.50	11.98 to 9.98	Glacial Till
E3P Installation	ns				
WS102E	10.80	50	0.5 to 4.00	10.30 to 6.80	Head
WS108E	11.40	50	0.5 to 4.00	10.90 to 7.40	Head
WS109E	10.50	50	0.5 to 4.00	10.00 to 6.50	Head
WS112E	12.50	50	0.5 to 4.00	12.00 to 8.50	Glacial Till
WS119E	12.20	50	0.5 to 4.00	11.70 to 8.20	Glacial Till

Location	Ground level (m OD)	Standpipe diameter (mm)	Screen top and base depth (m bgl)	Screen top and base elevation (m OD)	Strata targeted
WS123E	12.50	50	1.00 to 4.00	11.50 to 8.50	Glacial Till

4.4 Geo-environmental testing

4.4.1 Sampling strategy and protocols

Exploratory hole positions were determined by the client in reference to the site conditions and uncertainties identified in the E3P report.

The windowless sample locations were targeted for specific investigation, but a reasonably even spacing was used for the remainder of the site.

No specific sampling statistics or grid were utilised in this instance.

Samples were taken, stored and transported in general accordance with BS 10175:2011+A2:2017.

4.4.2 Site screening tests

A photoionization detector (PID) (Tiger Phocheck 10.3ev) was used during the fieldwork to screen samples. The PID readings are detailed on the exploratory hole logs in Appendix B.

4.4.3 Geo-environmental monitoring

Gas monitoring boreholes have been monitored on six occasions by Hydrock and two occasions by E3P. The results are presented in Appendix D. Monitoring has been completed.

4.4.4 Geo-environmental laboratory analyses

The chemical test certificates for testing undertaken by Hydrock are provided in Appendix E. Wherever possible, UKAS and MCERTS accredited procedures have been used.

The chemical test certificates for testing undertaken as part of E3P investigation can be found within the E3P ground investigation report referenced 14-451-R1-1.

The geo-environmental analyses undertaken on soils are summarised in Table 4-4.

Table 4-4: Geo-environmental analyses of soils

Determinand Suite	Topsoil	Made Ground	Head	Glacial Till
Hydrock Data				
Hydrock minimum suite of determinands for solids*	3	15	-	1
Speciated aliphatic and aromatic banding Total petroleum hydrocarbons including BTEX and MTBE by HS-GC/MS and GC/FID (Hydrock Tier 2 TPH Suite)	1	4	-	-
Benzene, toluene, ethylbenzene and xylene (BTEX) by HS-GC/MS	1	4		-
MTBE (Methyl Tertiary Butyl Ether) by HS-GC/MS	1	4		-
Asbestos Bulk Identification	-	6	-	-
WAC Full Solid Suite	-	2	-	-

Determinand Suite	Topsoil	Made Ground	Head	Glacial Till
E3P Data				
E3P minimum suite of determinands for solids**	6	11	2	1
Speciated Total petroleum hydrocarbons by HS-GC/MS and GC/FID (Hydrock Tier 1 TPH Suite)	-	18	-	-
Volatile organic compounds by HS-GC/MS	-	1	-	-
Semi-volatile organic compounds by GC-MS	-	1	-	-

^{*}Hydrock minimum soil suite comprises: As, B (water soluble), Be, Cd, Cr (total), Cr (VI), Cu, Hg, Ni, Pb, S (elemental), Se, V, Zn, cyanide (total), sulphide, pH, asbestos fibres, speciated polynuclear aromatic hydrocarbons (PAH, by GC-FID), total phenols and fraction of organic carbon

The soils chemical test data (including both Hydrock and historical data) are interpreted and assessed in Sections 7.3 and 7.4.

The geo-environmental analyses undertaken on waters for testing undertaken by Hydrock are summarised in Table 4-5.

Table 4-5: Geo-environmental analyses of waters

Determinand Suite	Ground-water	Leachates
Hydrock Data		
Hydrock minimum suite of determinands for waters	4	-
Speciated aliphatic and aromatic banding Total petroleum hydrocarbons by HS-GC/MS and GC/FID (Hydrock Tier 2 TPH Suite)	2	-
Benzene, toluene, ethylbenzene and xylene (BTEX) by HS-GC/MS	2	-
MTBE (Methyl Tertiary Butyl Ether) by HS-GC/MS	2	-
E3P Data		
E3P minimum suite of determinands for waters	4	5
Speciated aliphatic and aromatic banding Total petroleum hydrocarbons by HS-GC/MS and GC/FID (Hydrock Tier 2 TPH Suite)	4	5
Benzene, toluene, ethylbenzene and xylene (BTEX) by HS-GC/MS	4	5
MTBE (Methyl Tertiary Butyl Ether) by HS-GC/MS	4	5

The groundwater chemical test data (including both Hydrock and historical data) are interpreted and assessed in Section 7.5.

4.5 Geotechnical testing

The geotechnical tests undertaken by Hydrock are summarised in Table 4-6 and the test certificates are provided in Appendix C. Wherever possible, UKAS accredited procedures have been used.

The geotechnical tests undertaken as part of E3P investigation can be found within the E3P ground investigation report referenced 14-451-R1-1.

^{**}E3P minimum soil suite comprises: As, Cd, Cr (total), Cr (VI), Cu, Hg, Ni, Pb, S (elemental), Se, V, Zn, cyanide (total), sulphide, pH, asbestos fibres, speciated polynuclear aromatic hydrocarbons (PAH, by GC-FID), total phenols and fraction of organic carbon

Table 4-6: Summary of sample numbers for geotechnical tests

Test	Made Ground	Head	Glacial Till	Singleton Mudstone
Hydrock Data				
Natural moisture content	3	11	8	-
Atterberg limits	2*	6	2	-
Particle size distribution (sieve/sedimentation)	-	4	3	-
Sulphate and aggressive chemical environment classification for buried concrete classification (full BRE SD1 suite)	2	3	-	1
Single stage undrained triaxial compressive strength	-	10	5	-
One dimensional oedometer consolidation	-	3	-	-
Remoulded California Bearing Ratio at natural moisture content (soaked)	3	1	-	-
Organic Matter Content	2*	-	-	-
Point Load Strength	-	-	-	8
E3P Data				
Natural moisture content	4	16	10	-
Atterberg limits	4	13	10	-
Optimum Moisture Content / Maximum Dry Density Relationship (2.5kg rammer)	1	3	1	-
Particle size distribution (sieve/sedimentation)	-	4	1	-
Sulphate and aggressive chemical environment classification for buried concrete classification (full BRE SD1 suite)	1	1	-	-
Single stage undrained triaxial compressive strength	-	5	6	-
One dimensional oedometer consolidation	1	5	3	-
*Undertaken on pond infill- interpretated as Made Ground for the	purpose of this	table.		

The geotechnical test data (including both Hydrock and E3P) are summarised in Section 5.7 and interpreted in Section 6.

5. GROUND INVESTIGATION RECORDS AND DATA

5.1 Physical ground conditions

5.1.1 Summary of strata encountered

The following presents a summary of the properties of the ground and groundwater conditions encountered, based on field observations, interpretation of the field data and laboratory test results, taking into account drilling, excavation and sampling methods, transport, handling and specimen preparation.

All relevant data from the Hydrock investigation discussed in Section 4 as well as any reliable data from previous investigations noted in Section 1.4 are used from this point forward.

Details of the Hydrock provided in the logs in Appendix B, the E3P logs can be found within the E3P ground investigation report referenced 14-451-R1-1. A summary of the ground model is presented in Table 5-1 and the individual strata are described in the sections below. Relevant cross sections are presented in Appendix B and the transect of the cross sections are Cross Section Plan (Hydrock Drawing 19851-HYD-XX-XX-DR-GE-0007) in Appendix B.

Table 5-1: Strata encountered

Stratum	Depth to top (m bgl)	Depth to base (m bgl)	Thickness (m) (range)	Thickness (m) (average*)
Surface Cover – bituminous bound pavement	Surface	0.1	0.1	-
General Made Ground	0.0 - 0.50	0.2 - 1.60 >1.5 - >3.45 ⁺	0.1 - 1.45 >1.45 - 3.45 ⁺	0.6
Pond Infill Made Ground	Surface	1.40	1.40	-
Pond Natural Sediments	1.40	3.20	1.80	-
Topsoil	Surface	0.05 - 0.60	0.05 - 0.60	0.26
Head Deposits	0.10 - 1.60	1.0 - 18.50 >5.45 ⁺	0.50 - 18.20 >5.45 ⁺	13.31
Glacial Till	0.15 - 18.50	23.50	>0.3 - >20.45	23.10
Singleton Mudstone Member	23.50	>32.50	>9.0	Not proven

^{*}Where proven.

There is significant lateral variation in the superficial deposits, with Head present in the centre and north of site which lies above Glacial Till. Where the Head Deposits is interpreted not to be present the Glacial Till is found at very shallow depths.

5.1.2 Surface covering

The following surface cover was identified during the field reconnaissance and the fieldworks:

- Bituminous bound pavement hardstanding, in the car parks and roads, covering approximately 10% of the site and noted to be in good condition poor condition with no significant potholes or scars).
- Grassed, cropped, bare fields and trackways, covering approximately 75% of the site.

⁺where not proven

- Structures and concrete hardstanding (farm buildings, boiler house, external prison offices etc.) covering approximately 5% of the site.
- Vegetation (trees, shrubs, brambles), covering approximately 10% of the site.

5.1.3 Bituminous bound pavement

The thickness of the macadam surface was only seen at one location, BH107, and was found to 0.1m bgl. The bituminous bound pavement was found to resting directly on a granular sub-base.

5.1.4 Topsoil

The majority of exploratory holes encountered topsoil.

Topsoil was between 0.05m and 0.60m thick, with an average thickness of 0.26m. The topsoil generally comprised soft dark brown slightly sandy clay, often slightly silty or slightly gravelly. Some topsoil contained minor anthropogenic fragments, such as brick or ceramics.

For the purposes of this report, topsoil is defined as the upper layer of an in-situ soil profile, usually darker in colour and more fertile than the layer below (subsoil), which is a product of natural chemical, physical, biological and environmental processes, but does not imply compliance with BS 3882:2015. Reuse of topsoil as a growing medium at the site should be determined by the landscape architect or the landscape Contractors.

5.1.5 Made Ground

Made Ground was recorded across the majority of site and the depth to the base of the Made Ground is shown on Hydrock Drawing 19851-HYD-XX-XX-DR-GE-0004 in Appendix A.

Where proven, the depth to base was 0.20 - 1.60m bgl, though unproven depths ranged from >0.25 - >3.45m bgl. Many unproven depths were observed in the CBR pits, which did not need to progress beyond the shallow soils and should not be interpreted as indicative of deep Made Ground.

Reworked Topsoil

While some strata defined as topsoil included rare anthropogenic inclusions, where these were of a higher proportion the strata were defined as Made Ground. As such much of the shallow made ground found at the surface or below the topsoil in the fields comprised soft to firm (dark) brown sandy slightly gravelly clay. Gravel tended to comprise angular to subangular fine to coarse sandstone, limestone, mudstone, brick, coal, with rare fragments of ceramics and glass. Occasionally a comparable clayey sand stratum was observed. These strata were generally found up to 0.40m bgl, though were found deeper in some areas e.g., to 0.80m bgl in SA101.

Cohesive Made Ground

A firmer cohesive Made Ground was often observed, typically comprising firm grey/brown sandy slightly gravelly clay with low cobble content. Gravel is angular to subangular fine to coarse of brick, siltstone, coal, mudstone and sandstone. Cobbles are subangular of brick. This Made Ground was encountered at the greatest deepest during the E3P site works to 3.45m (unproven) in WS101 in the vicinity of the Boiler House, which is considered an outlier for Made Ground depth across the site.

Reworked natural strata

Occasionally firm grey/brown clays were observed (with or without gravels) that had the appearance of reworked natural ground. These were typically <0.50m thick and found above glacial till or head.

Other notable Made Ground strata

- In BH101 light grey angular cobbles of sandstone and quartzite were found between 0.30 and 0.80m bgl.
- Ashy, sandy gravels or gravelly sands were observed in BH104 between 0.05 and 0.40m bgl, CBR101 between 0.30m and 0.60m bgl, CBR105A between 0.5m and 0.6m bgl, and SA104 between 0.45m and 0.60m bgl.
- In SA105 and SA105A a soft to firm dark grey/brown sandy gravelly CLAY with low cobble and boulder content to approx. 1.00m bgl. Gravel is angular to subangular fine to coarse of brick, concrete, coal, mudstone, slate, sandstone and quartzite with rare fragments of plastic, timber and polystyrene. Cobbles and boulders are subangular of concrete. In SA105 this overlay a light grey angular to subangular fine to coarse gravel of limestone from 1.00 -1.20m bgl.

5.1.5.1 Pond Fill Made Ground

The pond fill made ground was found between 0.00m and 1.40m bgl in WS102, which targeted the location of a historical infilled pond.

It comprised a firm sandy gravelly clay with medium cobble content to 0.70m bgl, which contained gravel of concrete, brick, sandstone, mudstone, coal and limestone with rare fragments of timber, mental and plastic, and cobbles of concrete.

This overlies a soft sandy slightly gravelly clay with low cobble content. Gravel was comparable to the strata above, with cobbles of brick and mudstone.

5.1.6 Natural Pond Sediments

The natural pond sediments were found between 1.40m and 3.20m bgl in WS102, which targeted the location of a historical infilled pond.

Very soft greyish brown sandy clay with a moderate organic (humic) odour was observed between 1.40m and 2.00m bgl.

Very soft black and dark brown peaty clay with a moderate organic (humic) odour was observed between 2.00m and 3.20m bgl.

Recovery of both strata was limited.

5.1.7 Head Deposits

Head Deposits were encountered underlying the Made Ground or topsoil in the centre and north of the site. Head Deposits are between 0.5m and 18.20m thick where proven, and while at some locations the depth of Head is unproven in the window sample boreholes, it is considered unlikely to exceed the latter. Deeper head was encountered in the centre of the north of the site, where it was proven up to 19.00 bgl.

Head generally consisted of three strata:

- Firm to stiff brown clays, often slightly sandy slightly gravelly and similar in appearance to the Glacial Till, found from surface or below topsoil/Made Ground to approx. 9.00m bgl.
- Soft to firm sandy silty, occasionally gravelly, clays; generally found from 9.00m bgl to between 15.00m and 19.00m bgl.
- Loose to medium dense silty fine and medium sand, occasionally gravelly, between 0.30m and 3.00m thick found above, below and within the silty clays.

Thin bands of sands, gravels and silty clays were also found at shallow depths across the centre and south.

The Head Deposits have been characterised primarily by the presence of the silty clays and associated sand bands at depth. Where deeper boreholes were not progressed and the silty material is not seen it is difficult to determine where the shallow superficial soils are Head or Glacial Till, given their very similar appearance.

The Head Deposits are considered to represent the Head Deposits shown on the BGS mapping, though appear to cover a wider area westward across the centre of site.

5.1.8 Glacial Till

The 'Top of Glacial Till Plan' is shown on Hydrock Drawing 19851-HYD-XX-XX-DR-GE-0005 in Appendix A.

Glacial Till was encountered at shallow depths underlying the topsoil/Made Ground in the east and south of the site, and much deeper below the Head Deposits present in the centre, east and north of the site area. The base and thickness were only proven at BH106, at 23.50m bgl and 23.10m respectively.

The shallow Glacial Till generally consisted of firm to stiff, reddish brown, clays and slightly sandy, slightly gravelly clays. Where found at depth it was consistently stiff to very stiff, reddish brown, slightly sandy, slightly gravelly clay. Gravel was generally angular to rounded, fine to coarse, of mudstone and siltstone.

Where deeper boreholes were not progressed and the silty material is not seen it is difficult to determine where the shallow superficial soil deposits are Head Deposits or Glacial Till, given their very similar appearance.

The Glacial Till is considered to represent the Till shown on the BGS mapping.

5.1.9 Singleton Mudstone Member

The Singleton Mudstone Member was encountered underlying the Glacial Till in BH106, in the north east of the site. It was found from 23.50m to 32.50m, with the base and thickness remaining unproven.

Given the very stiff Glacial Till strata found in this location is found at similar depths across the site, it is anticipated that the depth to rockhead is also similar across the site.

This stratum comprised very weak to weak interbedded mudstones and siltstones with very closely to medium spaced fracture sets.

5.2 Obstructions

Obstructions were encountered in three boreholes during the investigation.

A refusal in WS101E was recorded as the reason for borehole termination. This was within soft, brown gravelly (mudstone and brick) clay Made Ground, and is likely to be caused by a large cobble or boulder.

Cobbles of concrete within a gravelly clay, prevented advancement of the hand pit for WS107.

A 900mm thickness of reinforced concrete was encountered in BH107, which resulted in the borehole being relocated. The obstruction appeared to comprise an upper concrete slab from 0.3m to 0.7m bgl, overlying a lower concrete slab from 0.7m to 1.2m bgl with the thickness unproven. Rebar 10mm thick was found at approximately 0.4m, 0.6m, and 0.8m bgl within the concrete.

5.3 Visual and olfactory evidence of contamination (soil)

In addition to the more common man-made constituents (ash, clinker, plastic, etc), described above in Section 5.1.4, visual and olfactory evidence of contamination was noted in one of the E3P exploratory hole locations, summarised in Table 5-2.

Table 5-2: Visual and olfactory evidence of contamination - soils

Stratum	Location	Depth (m bgl)	Description
Made Ground	WS106E	0.80 - 1.00	Hydrocarbon odours

5.4 Groundwater

5.4.1 Groundwater observations and levels

Groundwater encountered during the investigation is listed in Table 5-3. A groundwater observation represents the depth at which groundwater was first observed and is likely to be deeper than the actual groundwater table level at that location.

Table 5-3: Groundwater occurrence during the fieldwork

Stratum	Location	Fie	ldwork	Comment
		Groundwater observation (m bgl)	Rose to after 20 mins (m bgl)	
Head	BH104	10.00	4.80	-
	BH105	9.00	4.60	-
	BH105	15.50	10.40	-
	BH107A	9.30	4.90	-
	BH108	8.70	4.90	-
	BH109	8.50	5.10	-
	BH109	12.40	9.30	-
	WS106	2.50	1.80	-
	WS105E	1.00	-	Seepage.
	WS106E	1.50	-	Seepage.
	WS110E	1.50	-	Seepage.
	WS117E	1.00	-	Seepage.
Glacial Till	WS119E	3.00	-	Seepage.
	WS121E	3.00	-	Seepage.
	WS124E	3.50	-	Seepage.
Made Ground	WS102	1.20	-	-

Stratum	tum Location	Fie	ldwork	Comment
		Groundwater observation (m bgl)	Rose to after 20 mins (m bgl)	
	WS101E	2.00	-	Seepage.
	WS118E	1.00	-	Seepage.

Groundwater levels recorded during post-fieldwork monitoring are summarised in Table 5-4.

Table 5-4: Groundwater level data summary

Stratum	Date	Screen top	Location	Post-fieldwork	monitoring
	range	and base depth (m bgl)		Depth to groundwater (range) (m bgl)	Groundwater elevation (range) (m OD)
Head and Glacial Till	06/10/21- 08/03/22	6.0 to 20.0	BH101	1.88 - 2.23*	8.61 - 8.26
Head and Glacial Till		5.0 to 20.0	BH103	2.50 - 2.90*	8.48 - 8.08
Head and Glacial Till		3.0 to 20.0	BH105	1.60 - 2.35*	8.82 - 8.07
Glacial Till and Singleton Mudstone		14.0 to 26.0	BH106	1.67 - 2.16*	11.49 - 11.00
Head		5.0 to 13.0	BH107A	3.01 - 3.80*	8.04 - 7.25
Head		3.0 to 12.0	BH108	3.53 - 3.93	7.87 - 7.47
Head		5.0 to 13.0	BH109	1.66 - 2.54*	10.21 - 9.33
Infilled Pond		0.5 to 3.0	WS102	0.45* - 1.08	11.39 - 10.76
Glacial Till		0.5 to 2.50	WS103	0.32	13.89
Glacial Till		0.5 to 2.50	WS104	0.24* - 0.80	12.24 - 11.68
Head	13/11/20-	0.5 to 4.00	WS102E	0.65	10.15
Head	01/12/20	0.5 to 4.00	WS108E	2.82 - 3.38	8.02 - 8.58
Made Ground		0.5 to 4.00	WS109E	0.41 - 0.42*	10.08 - 10.09
Glacial Till		0.5 to 4.00	WS112E	0.40 - 0.42*	12.08 - 12.10
Glacial Till		0.5 to 4.00	WS119E	No ac	cess
Glacial Till		1.00 to 4.00	WS123E	No ac	cess

^{*} Dips above response zone

5.4.2 Infiltration tests

The results of the infiltration testing undertaken are summarised in Table 5-5. The results sheets are presented in Appendix B.

Testing was carried out in general accordance with BRE Digest 365 (BRE DG365) (2016).

Table 5-5: Infiltration test results

Stratum	Location	n Depth to base of pit (m bgl)	Infiltration rate (m/s)				
			Run 1	Range			
Head	SA101	1.80	Limited to no infiltration- unable to	-			
	SA103	1.50	calculate infiltration rates	-			
Glacial Till	SA102	1.65		-			
	SA104	1.60		-			

Stratum	Location	Depth to base of pit (m bgl)					
			Run 1	Range			
	SA106	1.50		-			

5.4.3 Groundwater summary

In general, shallow groundwater was encountered sporadically as perched on top of the Glacial Till or Head Deposits at the interface with the Made Ground. The shallow perched groundwater is not present site-wide and appear to be localised.

There were two deeper groundwater tables encountered. The first was within a deeper layer of sand deposits within the Head Deposits at depths in the order of 8.50m to 15.50m bgl. This groundwater table was found under sub-artesian pressure rising to between 4.60m and 5.10m bgl. This groundwater table appears to be flowing from west to east towards Wymott Brook a tributary of the River Lostock. A second groundwater table was present at the Glacial Till/weathered Singleton Mudstone Member interface.

Infiltration testing was undertaken within the shallow Head Deposits and Glacial Till Deposits. Due to limited to no infiltration within SA101 to SA104 and SA106 an infiltration rate could not be calculated suggesting the site is unsuitable for soakaway drainage design.

5.5 Ground gases (carbon dioxide and methane)

Records from the gas monitoring boreholes are presented in Appendix D and summarised in Table 5-6.

To date three monitoring visits have been undertaken, with a further three visits to be undertaken as part of the current commission. The data are assessed in Section 7.6.

Table 5-6: Range of ground gas data

Stratum	Methane (%)	Carbon dioxide (%)	Oxygen (%)	Steady flow rate (I/hr)	Comment
Made Ground	<0.1	7.7 - 8.6	9.5 - 11.7	<0.1	Two boreholes.
Pond Infill & Natural	<0.1 - 3.8	0.9 - 7.5	3.9 - 20.4	<0.1 - 4.9	One borehole.
Head	<0.1 - 0.2	0.2 - 10.1	0.621.6	<0.1 – 13.4	Nine boreholes.
Glacial Till & Singleton Mudstone	<0.1 - 4.6	<0.1 - 6.8	4.6 - 21.4	<0.1 – 21.2	Three boreholes.

5.6 Organic vapours

The PID results are provided on the logs in Appendix B. No PID results exceeded 1ppm.

5.7 Geotechnical data

5.7.1 Introduction

Laboratory test results are contained in Appendix C with in situ test results shown on the relevant exploratory hole log or datasheet in Appendix B. The following sections summarise the main findings and provide interpretation where appropriate.

5.7.2 Plasticity

The volume change potentials in terms of BRE Digest 298 with respect to building near trees have been determined from the results of plasticity index tests on samples of soil. These are summarised in Table 5-7.

Table 5-7: Volume change potential

Stratum	No. of tests	Plasticit	Modified Plasti Index		icity	Plasticity designation	Volume Change Potential		
		Min.	Max.	Av.	Min.	Max.	Av.		
Made Ground	4	21	35	27.5	19.7	29.1	24.8	Intermediate to high	Low to medium
Natural-Pond Infill	2	22	49	35.5	21.8	48.0	34.9	Intermediate and extremely high	Medium to high
Head Deposits	19	17	25	21	16.8	24.0	20.1	Low to intermediate	Low to medium
Glacial Till	14	19	30	21.9	17.1	29.7	21.0	Intermediate	Low to medium

5.7.3 Particle size distribution

Particle Size Distribution test (PSDs) results are summarised in Table 5-8 and summary descriptions and PSD plots of the material analysed are presented in Appendix C.

Table 5-8: PSD results summary

Stratum	No. of tests	Silt/Clay %	Sand %	Gravel %	General description
Head Deposits	6	55-82	15-34	2-11	Slightly sandy slightly gravelly CLAY.
	1	45	54	1	Slightly gravelly very clayey SAND.
	1	97	3	0	Silty CLAY.
Glacial Till	4	78-81	15-18	2-5	Slightly sandy slightly gravelly CLAY.

5.7.4 Soil strength

Table 5.9 summarises information pertaining to the shear strength of the soils according to geological stratum. Factual results are summarised for laboratory tests, field tests (e.g., hand shear vane) and uncorrected Standard Penetration Tests (SPT). Where the SPT is used to infer shear strength by published correlation, this is also tabulated. A shear strength versus depth profile is summarised in Figure 5.1, and plots are presented in Appendix C.

Table 5-9: Soil strength results and derived values

Stratum	No. of tests	SPT (N-value) (range)	cu (kPa)	c' (kPa)	Method
Head Deposits	79	5 - 23	25 - 115*		SPT – cable percussion.
	59	6 - 50	30 - 250*	26	SPT – windowless sampler boreholes.
	8	-	39 - 114	26	Hand shear vane
	15	-	54 - 222		Laboratory triaxial test**
Glacial Till	28	5-50	25-250		SPT – cable percussion.
	52	8-27	35-135	26	SPT – windowless sampler boreholes.
	3	-	89-116		Hand shear vane
	11	-	21-183		Laboratory triaxial test**
Natural- Pond Infill	1	0	0*	23	SPT – windowless sampler boreholes.
*Correlation with	Stroud and Butle	er (1975) hased	on 'average' nla	asticity	

Undrained Shear Strength (kN/m²) 0 50 100 150 200 250 300 0 × Undrained Shear Strength SPTs (CP)- Glacial Till (kN/m^2) 5 Undrained Shear Strength SPTs (WLS) -Head (kN/m²) ▲ Undrained Shear Strength $\times \times \times$ SPTs (WLS)-Glacial Till ж (kN/m^2) 10 Depth (m bgl) **X** Undrained Shear Strength жжж SPTs (CP) Head (kN/m²) жжж Undrained Shear Strength ж жжж HSV- Glacial Till (kN/m²) 15 XXXXX + Undrained Shear Strength HSV- Head (kN/m²) × Undrained Shear Strength 20 Triaxial- Glacial Till (kN/m^2) X Undrained Shear Strength Triaxial- Head (kN/m²) 25

Figure 5.1: Undrained shear strength versus depth summary

As shown by Figure 5.1, the undrained shear strength of the Head Deposits within the top 5.00m ranges from 30 to 100kN/m^2 with some values greater than 100kN/m^2 . Between 5.00m and 17.00m bgl the undrained shear strength in the Head Deposits is 50 to 85kN/m^2 with some values between 11.00m and 14.00m bgl of <50 kN/m². The data shows that the deeper Head deposits between 5.00m and 17.00m bgl are predominantly firm in consistency.

Where shallow Glacial Till deposits were encountered predominantly to the north and southern extents of the Head Deposits, between 1.20m and 5.00m bgl the undrained shear strength ranges from 50 to 135 kN/m². The deeper Glacial Till below the Head Deposits at circa 15.50m to 20.00m bgl had an undrained shear strength of between 88 and 250kN/m², showing a stiff to very stiff consistency.

5.7.5 Relative density

Table 5-10 summarises information pertaining to the relative density of the granular soils according to geological stratum. Factual results are summarised for laboratory tests, field tests (e.g., SPT correlation). A SPT 'N' value versus depth profile is summarised in Figure 5.2. Plots are presented in Appendix C.

Table 5-10: Relative density results and derived values

Stratum	No. of tests	Method	SPT (N-value) (Range)	phi' (°)
Head	9	SPT – cable percussion (Peck et. al. (1967).	1 -16	28-33
	7	SPT – windowless sampler boreholes (Peck et. al. (1967).	8-19	30-33
Glacial Till	1	SPT – windowless sampler boreholes (Peck et. al. (1967).	13	31

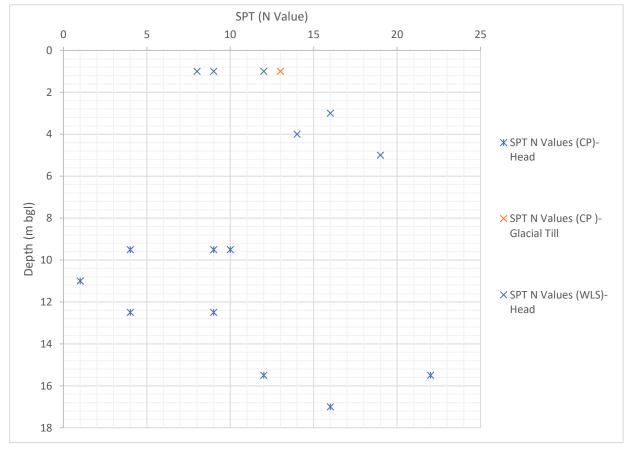


Figure 5.2: SPT 'N' Value versus depth summary

The N-values obtained in the shallow Head Deposits comprising bands of sand within the cohesive soils ranged from 8 to 19 between 1.20m and 5.00m bgl. These shallow granular deposits within the Head Deposits are of loose to medium density. Between 9.50m and 12.50m bgl, the granular deposits within

the Head Deposits yielded N Values in the order of 1 to 10 showing there are very-loose to loose in density. The deeper granular deposits within the Head generally were interbedded with silts prior to encountering the deeper stiffer cohesive Glacial Till.

One SPT within localised granular deposits in the Glacial Till at 1.20m bgl had an N Value of 13 and is therefore of a medium density.

5.7.6 Compressibility

Table 5-11 presents a summary of the derived parameters for coefficient of consolidation and compressibility. The data indicates that the material is generally of medium to high compressibility over the pressure ranges tested.

Table 5-11: Summary of compressibility

Stratum	No. of tests / results	Method	Pressure range (kN/m²)	Coefficient of volume compressibility (mv) (m²/MN)	Coefficient of consolidation (Cv) (m²/yr)		
	138	Correlation with SPT*	-	0.40 - 0.09	-		
			0 – 35	0.60 - 0.15	38.2 - 5.6		
			35 - 70	0.39 - 0.20	13.9 - 3.3		
Head	_	One Dimensional Oedometer Testing	60 - 140	0.34 - 0.12	13 – 2.5		
	5		140 - 280	0.14 - 0.12	7.3 - 2.7		
			240- 320	0.15 - 0.09	12 - 1.9		
			Unload	0.08 - 0.01	-		
	1	One Dimensional Oedometer Testing	0 - 35	1.47	1.2		
			35 - 70	0.59	1.8		
Made Ground			70 - 140	0.39	2.5		
			140 -280	0.24	2.4		
			Unload	0.10	4.7		
	80	Correlation with SPT*	-	0.40 - 0.07	-		
			0 – 55	0.29 - 0.11	39.5- 22.1		
Glacial Till		One Dimensional	55 - 110	0.24 -0.17	18.1 - 4.7		
Glacial IIII	3	One Dimensional Oedometer Testing	110 -280	0.13 - 0.11	4.2 - 2.3		
			220 - 440	0.09 - 0.07	3.9 - 1.8		
			Unload	0.04 - 0.03	-		
Natural Pond Infill	1	Correlation with SPT*	-	2	-		
* An f2 value of 0.50 has been used based on a plasticity index of 21. (Tomlinson (2001), after Stroud, 1974)).							

5.7.7 Compaction and moisture content

Table 5-12 presents a summary of the moisture content tests and compaction studies undertaken at the site.

Table 5-12: Compaction study results

Stratum	No. tests	Method	Natural moisture content (%) (range)	Optimum moisture content (%) (range)	Particle density (Mg/m³) (range)	Maximum dry density (Mg/m³) (range)
Head	3		20 - 23	17 - 20	2.65 - 2.7*	1.69 - 1.8
Glacial Till	1	2.5kg Rammer	20	17	2.65*	1.76
Made Ground	1		26	20	2.6	1.63

^{*} Assumed

5.7.8 Subgrade stiffness

The subgrade stiffness (CBR and Modulus of Subgrade Reaction) results are summarised in Table 5-13.

Table 5-13: CBR results and derived values

Stratum	No. tests	Method	Subgrade Surface Modulus (MPa)	CBR (%) (Range)		
Head Deposits	7	LWD Deflectometer Testing	12.9 - 26.1	0.6 - 1.9		
Glacial Till	10	LWD Deflectometer Testing	17.3 - 30.0	1.0 - 2.3		
Made Ground	7	LWD Deflectometer Testing	22.6 - 49.5	1.5 - 5.0		
Head Deposits	1	Laboratory remoulded sample at Natural Moisture Content (NMC)	42.8*	3.8		
Made Ground	3	Laboratory remoulded sample at Natural Moisture Content (NMC)	25.9 - 97.9*	2.3 - 8.7		
* Subgrade Surface Modulus (F) is calculated using guidance in LR113 (1984) and CD225 Rev 1 (2009). Equation for						

^{*} Subgrade Surface Modulus (E) is calculated using guidance in LR113 (1984) and CD225 Rev 1 (2009). Equation for conversion is 17.6(CBR)0.64

5.7.9 Sulphate content

In accordance with BRE (Special Digest 1), the Design Sulphate (DS) classification and the Aggressive Chemical Environment for Concrete (ACEC) classification are presented in Table 5-14. The assessment summary sheets are presented in Appendix C.

Table 5-14: Aggressive chemical environment concrete classification

Stratum	No. tests	DS	ACEC
Made Ground	3	DS-1	AC-1
Head Deposits	4	DS-2	AC-2
Singleton Mudstone Member	1	DS-1	AC-1*

5.7.10 Organic Matter Content

One organic matter was undertaken on Made Ground- Pond Infill and Natural- Pond Infill from WS102 at 1.65m and 2.00m bgl. Both soil types contained an organic matter content of 1.2%.

5.7.11 Intact material strength – rock

Table 5-15 summarises information pertaining to the strength of the intact rock material (not rock mass) according to geological stratum and, if applicable, weathering zones or other variations within particular strata.

Factual results are summarised for laboratory and field tests. Where point load index tests are used to infer unconfined compressive strength (UCS), this is also tabulated. Rock strength terms follow the method of BS EN ISO 14689-1:2003.

Care should be exercised in using these assumed rock strength parameters for any purpose beyond the scope of this report because it may be that additional sampling and testing is required for certain purposes. The reader should refer to the original test results in Appendix C. Note also that rock mass properties, rather than intact rock material properties, may be more suitable for design purposes.

Table 5-15: Intact rock strength results and derived values

Stratum	No. of	Point load index (Range)		UCS (MPa) (range)	Method		
	tests	Is	Is(50)				
Singleton Mudstone Member	8	0.03-0.22	0.03-0.22	0.63-4.62	Axial point load		
*a conversion factor of 21 has been used to convert Is(50) to UCS (Rusnak and Mark, 2000)							

6. GEOTECHNICAL ASSESSMENT

6.1 Geotechnical categorization of the proposed development

Eurocode 7, Section 2 advocates the use of geotechnical categorization of the proposed structures to establish the design requirements.

Hydrock has been provided with a development layout for the new prison (drawing reference 608623-0000-PEV-GHX0011-ZZ-DR-A-9100-P06), which comprises a number of different structures as summarised in Table 6-1.

Table 6-1: Summary of Proposed Structures

Structure Description	Construction Detail	Preliminary Geotechnical	Further Geotechnical
		Design Category	Design Required
House Blocks 01 - 07	4-storey precast concrete	CAT 2	\checkmark
Workshop	Portal frame with partial mezzanine	CAT 2	\checkmark
Support and Kitchen Buildings	2-storey portal frame	CAT 2	\checkmark
CASU	2-storey precast concrete	CAT 2	\checkmark
Boiler House	Portal frame or prefabricated unit	CAT 1	
Central Services Hub (CSH)	2-storey steel frame	CAT 2	\checkmark
Entrance Resource Hub (ERH)	2-storey steel frame/precast concrete	CAT 2	\checkmark
Electrical Sub Stations (5 No.)	Not stated. Assume small brick or prefabricated structures	CAT 1	

The preliminary geotechnical categorisation stated in Table 6-1 should be re-assessed at the design stage for each structure. Where a structure or part of a structure is determined to be geotechnical category 2 (or 3) then detailed geotechnical design is required in accordance with EC7. This should include verification of all relevant limit states based on the permanent and variable actions with the results presented as part of a Geotechnical Design Report (GDR).

Following the ground investigation and as part of the assessment provided in the following section, the preliminary geotechnical hazard identification undertaken in Section 3.3 has been updated.

Assessment has been undertaken in accordance with the general requirements of ICE/DETR Document 'Managing Geotechnical Risk' and the HE documents HD 41/15 and CD 622. The Geotechnical Risk Register following investigation is provided in Appendix G (Table J.3) and will need to be updated during future geotechnical design works.

6.2 Characteristic design values (electrical sub stations)

For design of Category 1 structures in accordance with BS EN ISO 1997-1 (EC 7), the geotechnical parameters given in Table 6-2 can be used for design.

These values have been determined from laboratory testing, in situ testing and by professional judgement using published data together with knowledge and experience of the ground conditions. Care should be exercised in using these assumed soil strength parameters for any purpose beyond the scope of this report because it may be that additional sampling and testing is required for certain purposes. The reader should refer to the original test results summarised in Section 5 and provided in Appendix B and Appendix C.

Table 6-2: Geotechnical parameters recommended for design of Geotechnical Category 1 Structures (EC7)

Parameter Stratum	Bulk unit weight kN/m³	Effective angle of internal friction	Effective cohesion kN/m²	Undrained shear strength kN/m ²	Coefficient of compressibility m²/MN	Subgrade Surface Modulus MN/m²
	γa	φ′ ^{b c}	c′ ^d	Cu ^e	m _v ^f	k ^g
Head 1.20 to 2.00m	21.5	26	0	40	0.25	20
Glacial Till 1.00 to 2.00m	21.0	26	0	40	0.25	25

- a. Measured as part of the triaxial strength test and estimated based on the recommendations of BS 8004-2015.
- b. Internal friction (φ') values for the granular in situ material derived from SPT data following the recommendations of Peck et al., (1967).
- c. Internal friction (φ') values for the cohesive in-situ material derived from BS 8004-2015, where $\varphi cv'$ is derived from plasticity index. The use of $\varphi cv'$ in the analysis is considered to provide a conservative estimate of φ' .
- d. BS 8002:1994 Code of practice for Earth retaining structures, British Standards institution.
- e. Site measurements and laboratory data.
- f. Laboratory data.
- g. calculated using guidance in LR113 (1984) and CD225 Rev 1 (2009). Equation for conversion is 17.6(CBR)0.64

In accordance with BS EN ISO 1997-1 (EC 7), Hydrock consider the majority of the proposed structures would be classified as Category 2 structures. As part of the separate geotechnical design, the designer should determine the geotechnical design values based on the data presented in this report.

6.3 Groundwork

6.3.1 Site preparation

The redevelopment will involve demolition of the existing buildings. This should be undertaken to an appropriate Specification to ensure any asset materials generated are processed and geotechnically suitable for reuse.

Buried obstructions were encountered during this investigation associated with foundations of former buildings, and there is a possibility of further such obstructions being encountered.

Topsoil should be removed from beneath all building and hardstanding areas.

6.3.2 Groundworks

There is a pond present in the north west of site and as part of the proposed development this pond will be backfilled. There is a backfilled pond present in the north east of the site located in WS102. Soft compressible soils in the base of the pond will require over-excavation. The sides of the excavation should also be benched prior to infilling. The void remaining should be backfilled with a geotechnically suitable material, which is either site-won or imported. Should the existing pond location fall below a proposed structure foundations will be required to extend below the base of the former pond into competent soils. The treatment of former infilled ponds and existing ponds should be undertaken in accordance with an earthworks specification this should be covered within a separate Geotechnical Design Report.

Following breaking out of hardstanding and obstructions, excavation of shallow soils should be readily undertaken by conventional plant and equipment. However, excavation through any buried construction may require heavy-duty excavation plant and the use of specialist breaking equipment.

Trial pit faces were noted to remain generally vertical without collapse. The faces of shallow, near vertically sided excavations put down at the site are likely to remain stable for only short periods of time.

Temporary trench support, or battering of excavation sides, is recommended for all excavations that are to be left open for any length of time and will definitely be required where man entry is required. Particular attention should be paid to excavation at, or close to, existing buildings, site boundaries and the existing prison perimeter fence, where collapse of excavation faces could have a disproportionate effect

A risk assessment of the stability of any open excavation should be undertaken by a competent person and appropriate measures adopted to ensure safe working practise in and around open excavations. Further guidance on responsibilities and requirements for working near, and in, excavations can be obtained from the Construction Design and Management Regulations (2015); Construction Information Sheet 47: Inspections and Reports (2005) and HSG47: Avoiding Danger from Underground Services.

To ensure no loads are imposed on the sides of the excavation, spoil should not be placed immediately adjacent to the excavation. Spoil should be placed a suitable distance from the side of the excavation (as assessed by a competent person).

Based on site observations, the rate of water ingress to the proposed excavations is likely to be slow. In these circumstances, groundwater control by sump pumping is likely to be sufficient.

However, it should be recognised that groundwater levels may vary from those at the time of the investigation, for example in response to seasonal fluctuations and the timing of construction may dictate the extent of groundwater control required.

Any water pumped from excavations may need to be passed via settlement tanks (to reduce suspended solids) before being discharged to the sewer. Discharge consents may also be required.

6.3.3 Earthworks/reuse of site-won materials

Whilst Hydrock has not been provided with the specific requirements for earthworks (cut / fill depths and volumes), it is understood earthworks may be required to form flat development platforms for the proposed new buildings. An initial assessment has been completed on the potential to reuse site-won materials as a General Fill material. This is summarised in Table 5.3.

The classification of materials depends on both the proposed end use and whether the material will meet the performance requirements of that end use. Based on Hydrock's understanding, the following assessment is based on General Fill.

An initial assessment of classification data (see Section 5.7 and Appendix C) has been completed based on Hydrock's understanding of the development and the potential to reuse site-won materials as an engineered fill material. This is summarised in Table 5.3.

Table 6-3: Preliminary earthworks assessment

Stratum	Proposed end use	Preliminary classification (SHW Series 600)	Comment	Suitability for improvement by the inclusion of binders
Made Ground	External Areas	Class 1 General Fill	Processing to remove oversize and deleterious material required.	Total potential sulphate in the order of 0.1 and 0.4%, may be suitable subject to further detailed design and testing.
Topsoil	Open Space	Class 4 (Landscape Fill)	Unsuitable for General Fill due to high organic content. Can only be used in areas which are not sensitive to settlement.	Unlikely to be suitable
Head Deposits	External Areas	Class 2A 2B General Fill	3-4% Wet of optimum, moisture conditioning (e.g., lime modification) likely to be required.	Total potential sulphate in the order of 0.2 and 0.4%, may be suitable subject to further detailed design and testing.
Glacial Till	External Areas	Class 2A 2B General Fill	3% Wet of optimum, moisture conditioning (e.g., lime modification) likely to be required.	Likely to be suitable.

The earthworks may need to be undertaken under a Materials Management Plan (see Section 8.3).

Before the use of hydraulic binders can be approved, comprehensive testing will need to be completed by a specialist Contractor to satisfy both themselves and the Engineer of the suitability of the soils for treatment and to confirm that the requisite end-performance of the material is achievable. In all instances where improvement by the inclusion of binders is considered, a mix design is required and as part of this design, samples should be checked for swelling, even where very low sulphate values are recorded.

Where it is proposed to reuse site-won materials as an engineered fill, it will be necessary to develop an appropriate Site-Specific Earthworks Specification. The basis for the Specification should be BS 6031:2009 and the latest version of the SHW, Series 600 Earthworks. Once site proposals have been further defined more specific consideration will need to be given to the reuse of materials and reference should be made back to Hydrock.

6.4 Foundation recommendations

In accordance with EC7, BS EN 1997-1+A1 (2013), the majority of the proposed structures including the four-storey house blocks are considered to be Geotechnical Category 2 and small light-weight structures such as the electrical sub stations can initially be considered as Geotechnical Category 1. As such, for Category 2 structures foundation recommendations are presented to aid development proposals only and separate detailed geotechnical design will be required. This separate geotechnical design should be undertaken in accordance with EC7, which requires each of the relevant limit states to be verified based on the calculated permanent and variable actions.

In general, the ground conditions across the site comprise the following:

- Made Ground up to approximately 1.0m bgl; over
- Firm and firm to stiff cohesive Head Deposits to approximately 10m bgl; over
- A zone of soft and loose cohesive and granular Head Deposits up to 5.0m thick extending to up to 15.0m bgl; over
- Firm to stiff cohesive Head Deposits to approximately 18.0m bgl: over
- Stiff to very stiff Glacial Till to approximately 24m bgl: over
- Very weak Mudstone.

The Head Deposits and Glacial Till are off medium volume change potential. Therefore, foundations will need to be appropriately designed to mitigate heave in the underlying soils where trees are removed. This may require deepening below the zone of tree influence and the installation of heave precautions and additional reinforcement. Furthermore, the foundation design is also to consider trees that remain in place and any proposed new planting within the influencing distance of structures.

In general, to support the heavier loaded four-storey prison units there may be a requirement to extend foundations below the variable Head deposits including the low strength zone at approximately 10m bgl.

Lighter bearing units may be founded within the firm to stiff shallow cohesive soils of the Head Deposits or Glacial Till subject to a foundation depth due to tree influence assessment and detailed geotechnical assessment.

Locally in the north west, deep Made Ground is present in close proximity to the existing boiler house, foundations in proximity to this deep Made Ground will require extending below the Made Ground. Locally in the north east, Made Ground is present to circa 1.30m bgl, this is underlain by compressible peaty clay to 3.20m bgl. These soils are associated with a backfilled former pond and require removal of the soft compressible soils in accordance with an earthworks specification and replacement with an engineered fill material. A specific foundation design should be established for this part of the site in conjunction with the earthworks design where over-excavation is undertaken.

On the basis of the ground conditions indicated from the current and previous investigations, the foundations will likely comprise:

- Shallow strip or trench fill foundations for the low rise lightly loaded structures understood to include the;
 - » Workshop
 - » Support and Kitchen Buildings
 - » CASU
 - » Boiler House
 - » Central Services Hub (CSH)
 - » Entrance Resource Hub (ERH)
 - » Electrical Sub Stations (5 No.)
- Piled foundations for the 4-storey house blocks.

6.4.1 Strip / trench fill foundations

Subject to detailed geotechnical design and verification of the actual load, the allowable bearing capacity stated in this report is based on a global factor of safety applied to the estimated ultimate bearing capacity designed to limit settlements to within normally tolerable limits.

Initial recommendations for shallow foundations are provided in Table 6-4 as a guide. Further geotechnical analysis, including the assessment of settlement, will be required as part of the foundation design in order to check the depth of influence based on the proposed foundation sizing.

Table 6-4: Recommendations for Shallow Foundations

Structure Description	Indicative foundation depth (m below current ground level) Not including deepening due to trees	Allowable Bearing capacity for strips up to 1.0m wide and pads up to 4m² (2m x 2m) (kN/m²)	Comments
Workshop, Support and Kitchen Buildings	1.50	100	Foundations to extend through any Made Ground.
CASU	1.50	80	Foundations to extend through any Made Ground. Reduced bearing capacity due to presence of loose gravel identified in WS103E.
Boiler House	1.50 – 2.00	80	Foundations to extend through any Made Ground. Increased foundation depth to account for Made Ground.
Central Services Hub (CSH)	1.00 – 1.50*	100	Foundations to extend through any Made Ground. Low strength organic deposits associated with the pond to 3.20 bgl requires overexcavation and replacement. Specific foundation design with additional reinforcing or designed to span fill.
Entrance Resource Hub (ERH)	1.50 – 2.00	100	Foundations to extend through any Made Ground.
Electrical Sub Stations (5 No.)	1.00	80 (50 for up to 1.5m wide)	Foundations to extend through any Made Ground.

^{*}Following over-excavation and removal or organic deposits. Consider vibro-stone columns, where replaced by engineered fill, or piled foundations.

For low-rise lightly loaded structures it is consider that an allowable bearing capacity of between 80kN/m^2 and 100kN/m^2 is suitable for outline design based on strip foundations up to 1.0m wide and pads up to 4m^2 ($2\text{m} \times 2\text{m}$). Where higher foundation pressures are required, consideration could be given to vibro improvement of the Head Deposits.

If enlarging the foundations is considered (for example, because loads are such that the quoted bearing pressure is inadequate) this could lead to increased settlements and the above recommendations should be reviewed as part of the geotechnical design.

Based on the BRE Digest 240 (medium), the minimum founding depth for strip or trench fill foundations is 0.90m below final ground level, and to below the base of the Made Ground.

Where foundation depths are stepped, for instance, in trench fill and strip foundations to match changes in depths due to trees or ground conditions, the steps should be designed in accordance with the requirements of the NHBC Standards or other relevant standards.

If trees are to be removed, the roots should be grubbed out and foundations extended to below the zone of disturbance created by this activity and to below any remaining root hairs.

Deepening of foundations in accordance with NHBC Standards or other relevant standards will be required where foundations are within the zone of influence of existing, removed or proposed trees and proposed shrub planting. A tree survey should be undertaken by an arboriculturist in accordance with BS 5873:2012 to identify the type, and height of existing trees on the site and including any off-site trees, which could have an effect on foundation design.

Where trench fill foundations are within the zone of potential desiccation from trees and are deeper than 1.5m bgl, a suitable compressible material or void former will be required on the inside faces of foundations to external walls and beneath ground bearing floor slabs.

Foundation formations should be inspected by a geotechnical engineer or other suitably competent person to ensure the founding conditions are suitable and as indicated in this report. Any formation materials deemed as unsuitable should be excavated and replaced with lean mix concrete or deepened to suitable strata. If this is not possible, alternative solutions (such as piling) should be undertaken.

As the ground conditions at formation level are likely to be of variable type and stiffness, for the strip/trench fill foundations, it is recommended that foundation concrete should be reinforced with mesh, installed at the top and bottom of the foundation, across the zone of variable soil conditions.

Foundation excavations should be protected from rainfall, inflow of surface water, frost and freezing conditions. They should also be protected from drying out in hot dry weather.

Groundwater monitoring indicates the presence of a sporadic, low flow groundwater table. Any water that collects at the base of the foundation excavations should be removed by pumping from a sump in the base.

6.4.1.1 Vibro stone columns (VSC)

Treatment by vibro-replacement stone columns (VSC) at suitable spacing could lead to improvement of the shallow soils by the creation of stone columns, and also by the densification of the granular soil present in some parts of the site. The depth and spacing of the VSC treatment should be determined by a specialist Contractor.

Based on the results of the ground investigation the strength profile of the Head Deposits does not significantly increase with depth within the upper 15m and therefore treatment by VSC will likely be partial depth. Input from a specialist contractor will be required to confirm the potential increase in bearing capacity achieved by this technique.

Shrinkable soil reinforced with stone columns is still susceptible to volume change and foundations should be designed accordingly, particularly where they are in the zone of influence of existing or proposed trees.

VSC Contractors use different methods of emplacing the stone columns. Due to the presence of shallow groundwater, it is recommended that bottom feed VSC is used to reduce the risk of collapse of stone columns.

The VSCs should be designed by a specialist. In addition, Hydrock recommend a Specification for the use of VSCs is written in accordance with BRE 391.

6.4.2 Piled foundations

Piled foundations are recommended for the proposed heavier loaded 3 to 4-storey house block units.

Depending on column loads and layouts, piles should extend through the Made Ground, loose and soft Head Deposits to a suitable depth into the underlying stiff to very stiff Glacial Till or very weak Singleton Mudstone Member.

Pile design by specialist contractor should be undertaken based on the results of this ground investigation. For the purposes of outline design the following pile capacities in Table 6-5 can be used as a guide.

Pile Toe Depth	Allowable	diameters	
(founding strata)	0.30m	0.45m	0.60m
15.00 (Head)	320	490	670
17.00 (Head)	360	555	755
19.00 (Till)	425	665	925
21.00 (Till)	465	730	1010
23.00 (Till)	505	790	1090

The values in Table 6-5 have been determined by permissible strength methods from the sum of the end resistance (Q_b) and skin friction (Q_s) divided by a factor of safety of 2.5 and included the following assumptions:

- Bearing capacity factor $N_c = 9$.
- Undrained shear strength at the base c_{ub} = 60kPa (Head Deposits) or 150kPa (Glacial Till).
- Adhesion Factor $F\alpha_p = 0.9$.
- Average undrained shear strength over length of pile $c_u = 60$ kPa.
- Negative skin friction not included.

Higher pile capacities can be obtained by end bearing within the mudstone at depths greater than 24m.

CFA piles should be suitable to support the foundations for the structures. However, the choice of piling system should be undertaken by a specialist piling Contractor and the design of piles is beyond the scope of this report. The decision on pile type and design should take into account the following factors relevant to the site:

- Obstructions in the ground are expected from the previous buildings onsite, which could cause piles to stop shallower than the design depths, or to deviate from the vertical, thereby reducing their capacity. In some circumstances, obstructions can lead to pile breakage.
- Pile installation can create preferential pathways for the migration of contaminants to the groundwater.

- Boring of piles through coarse soils can result in loosening of the material, with resultant risk of shaft collapse prior to concreting and reduced shaft friction.
- Groundwater levels within the deeper Head Deposits are in the order of 8.70m and 12.50m bgl under sub-artesian pressures rising up to 4.00m and 5.00m bgl and temporary casing is likely to be required to depths of approximately 13.00m bgl for bored piles. If CFA piles are used, concrete is placed as the auger is withdrawn, which can balance the water pressure if the operation is undertaken carefully.
- The groundwater in the Head, is under sub-artesian pressure, which should be taken into account in the pile design.
- Piles extending through Made Ground, engineered fill or in proximity to the former pond may be constructed through compressible soils, and piles should be designed to cater for the potential down-drag effects of negative skin friction on piles.
- Where bored piles extend through very soft ground, bulging of the concrete can occur, leading to lateral pressure on adjacent piles.
- Where foundations are constructed on clay soils within the influencing distance of trees design should include for the upper section of the pile to be sleeved or additional length allowed for to resist stresses from clay swelling or shrinkage. In addition, heave protection may be required on the inside faces and underside of the ground beams.

The pile design should be undertaken by a specialist based on loading criteria and the serviceability limit states provided by the structural engineer.

6.4.3 Foundation works risk assessment

As there is a low risk to Controlled Waters, Hydrock believes that a foundation works risk assessment is not required as the proposed piling, will not result in a significant increase in risk of pollution to Controlled Waters.

6.4.4 Working platform

For piling, a working platform will be required prior to the arrival on site of tracked plant. This should be designed and installed in accordance with BR470 (BRE 2004) based on data on the piling plant in accordance with an FPS certificate for the rig loadings.

6.5 Ground floor slabs

In accordance with the relevant standards, as clay soils of medium volume change potential are present at the site, it is recommended that suspended floor slabs with a void be adopted.

Slabs without a void (ground bearing or suspended cast in situ onto the ground) may be used if all of the following criteria are satisfied:

- the load on the floor slab does not cause excessive settlement;
- the foundation depth (such as due to the influence of trees) is less than 1.5m;
- any fill is suitable, well-compacted granular material and less than 600mm thick;
- it is demonstrated that the soils are not desiccated and are at their equilibrium moisture content; and

• ground floor construction is not undertaken when the surface soils are seasonally desiccated (i.e., during summer and autumn).

6.6 Roads and pavements

Where the CBR is found to be less than 2.5%, the sub-grade may be unsuitable for both the trafficking of site plant and as support for a permanent foundation, without improvement works being undertaken. Improvement works should be carried out in accordance with a site-specific design. In summary, consideration may be given to the following potential remedial techniques:

- excavation and re-engineering or replacement of weaker soils;
- the inclusion of geosynthetic reinforcement within the unbound layers of the capping and subgrade;
- where cohesive soils are present and they are deemed suitable for treatment with hydraulic binders, to employ modification and/or stabilisation techniques on the formation; and
- where granular soils are present, de-watering and re-engineering the formation.

6.7 Drainage

Indicative infiltration rates for the ground investigation are presented in Appendix C and are summarised in Table 5-5.

Soakaways are considered unsuitable for the site based on the low infiltration rates obtained from testing. However, the infiltration rates recorded may assist with attenuation as part of a Sustainable Urban Drainage System (SUDS).

6.8 Buried concrete

Based on guidelines provided in BRE Special Digest 1 (BRE 2005) and the information presented in Section 5.7.9 (Table 5-14):

- The Made Ground can be classified as Design Sulphate Class DS-1 and ACEC Class AC-1.
- The Head deposits can be classified as Design Sulphate Class DS-2 and ACEC Class AC-2.
- The Singleton Mudstone Member can be classified as Design Sulphate Class DS-1 and ACEC Class AC-1*.

The designer should check and confirm the classification of concrete using the information presented in Appendix B and Appendix C during the design.

7. GEO-ENVIRONMENTAL ASSESSMENT

7.1 Updated conceptual model

7.1.1 Updated ground model

The preliminary ground model developed from the desk study review Section 2 has been updated using the findings of the ground investigation and is presented in Section 5. This ground model is the basis for the geo-environmental assessment presented in this section.

7.1.2 Updated exposure model

Following the ground investigation, the plausible contaminant sources, receptors and pathways identified in the preliminary geo-environmental exposure model (Section 2), have been updated or confirmed as follows.

7.1.2.1 Sources

The following potential source has been removed from the exposure model.

- Various contaminants associated with possible historical MOD rail tracks and explosive store on site including heavy metals, volatile or semi volatile organic compounds no volatile organic or semi volatile organic compound were found above the limited of laboratory detection. There were no visual or olfactory evidence for solvent contamination and PID reading were <1ppm.
- Hydrocarbon vapours from potential VOC and petroleum hydrocarbon spillages/leaks- no obvious visual or olfactory evidence of hydrocarbon or VOC impact recorded during the ground investigation. The PID readings undertaken on various samples of Made Ground and natural soils were <1ppm.

7.1.2.2 Receptors

No potential receptors have been removed from the exposure model.

7.1.2.3 Pathways

The following potential pathway has been removed from the exposure model.

- Migration of contaminants via leachate migration through the unsaturated zone in the Head or Glacial Till- the ground investigation proved up to 20.45m of low permeability Head deposits or Glacial Till as such there is not considered to be a viable pathway.
- Migration of contaminants from the groundwater within the Made Ground/ Head or Glacial Till to the groundwater within the Singleton Mudstone aquifer- the ground investigation proved up to 20.45m of low permeability Head deposits or Glacial Till as such there is not considered to be a viable pathway. The Singleton Mudstone Member is considered to be an unproductive aquifer and therefore future groundwater abstraction is not considered viable.

Using the updated ground model and updated exposure model, generic risk assessment is undertaken as presented below.

7.2 Risk assessment approach

Generic risk assessments have been undertaken in accordance with the principles of LCRM (Environment Agency, 2019) using the CM that has been updated following the ground investigation.

Firstly, the risks associated with the identified potential contaminant linkages have been estimated using standardised methods (typically involving comparison of site data with published 'screening values'). Secondly, where screening values are exceeded, the result has been evaluated in an authoritative review of the findings with other pertinent information to determine whether or not the exceedance is, or is not acceptable in the site-specific circumstances. Further explanation is presented in Appendix I.

The data sets used in the assessment comprise the analytical results obtained by Hydrock and E3P investigations as listed in Section 4.

In cases where unacceptable risks are indicated, actions such as more advanced stages of risk assessment or remediation are proposed in Section 7.10.

7.3 Human health risk assessment

This is a Tier 2 assessment using soil screening values applicable to the residential without plant uptake, CLEA land use scenario.

There are no soil screening values for use in assessing the prison land use and in this instance a conservative screening option has been adopted by using the residential without plant uptake scenario.

The soil screening values used are generic assessment criteria (GAC). It should be noted that Category 4 Screening Levels (C4SL) for lead have been used as there is no recognised GAC for lead and the use of the term 'GAC' in this report includes the C4SL for lead.

Statistical testing is used where data sets are suitable. The critical issue is sample numbers. For data sets with low sample numbers and where sampling is targeted at specific areas, individual sample test results are compared directly with the screening values. Larger and non-targeted data sets are subject to statistical testing.

The phrase 'further assessment required' is used to denote soil concentrations that are equal to, or exceed, a GAC. This does not necessarily mean that the soil is 'contaminated' or not otherwise suitable for use. The assessment and any mitigation required are to ensure the site does not pose an 'unacceptable risk'.

The results of the assessment are presented in Appendix E.

7.3.1 Averaging areas

The 'averaging areas' used in this report are based on the conceptual model and the proposed development, and are summarised as:

- 'General' Made Ground;
- PAH Hotspots;
- Topsoil; and
- Natural Soils.

7.3.2 Risk estimation (without statistical testing)

7.3.2.1 Hydrock default list of determinands

Based on individual test results that exceed the GAC, the chemicals of potential concern which require further assessment are summarised in Table 7-1.

Table 7-1: Chemicals of potential concern for which further assessment is required (human health)

Chemical of potential concern	Generic criterion (mg/kg)	Basis for generic criterion	No. samples	Min. (mg/kg)	Max. (mg/kg)	No. samples exceeding generic criterion
PAH Hotspots						
Benzo(a)anthracene	7.8	GAC	4	2.6	45	1
Benzo (a)pyrene	1.6	GAC	4	5.5	70	4
Benzo(k)fluoranthene	16	GAC		1.6	26	1
Chrysene	16	GAC		2	36	1
Dibenz (a, h) anthracene	1.4	GAC		0.37	7	1
Indeno (1,2,3, cd) pyrene	6.6	GAC		1.5	26	1
'General' Made Ground						
No Exceedances						
Topsoil						
No Exceedances						
Natural						
No Exceedances						

The presence of benzo(a)pyrene in CBR101, WS118E and WS123E and presence of significant PAH elevations within WS111E requires further consideration.

The locations of the PAH hotspots are shown on the Hotspots Plan (Hydrock Drawing 19851-HYD-XX-XX-DR-GE-0008) in Appendix B.

7.3.2.2 Asbestos

There is visual evidence of Asbestos Containing Materials (ACM) in a number of exploratory hole locations. These locations are summarised in Table 7-2. Of the 19 samples tested for non-visible trace asbestos loose fibres there were no positive results.

Table 7-2: Visual evidence of Asbestos Containing Materials

Location	Depth (m bgl)	Comment
BH107a	0.30	Laboratory confirmed, Chrysotile- Hard/Cement Type Material
CBR 101	0.55	Laboratory confirmed, Chrysotile- Hard/Cement Type Material
CBR 109	0.20 -	Laboratory confirmed, Chrysotile- Hard/Cement Type Material
	0.35	

The locations of the visible asbestos encountered are shown on the Visible Asbestos Containing Materials Plan (Hydrock Drawing 19851-HYD-XX-XX-DR-GE-0006) in Appendix B.

The presence of Asbestos Containing Materials in soils and at the surface requires further consideration.

7.3.2.3 Petroleum hydrocarbons (PHC)

Targeted analysis of soils (based on visual / olfactory evidence of contamination) has identified petroleum hydrocarbons in soils at WS106E, WS111E and WSS18E, with exceedances of the following TPH fractions (TPH level 1 testing undertaken):

• WS106E 0.80m bgl: Aliphatic >EC8 – EC10 (70mg/kg vs a GAC of 65mg/kg);

- WS106E 0.80m bgl: Aliphatic and Aromatic >EC10 EC12 (2700mg/kg vs a GAC of 120 and 590mg/kg);
- WS106E 0.80m bgl: Aliphatic and Aromatic >EC12 EC16 (9400mg/kg vs a GAC of 59 and 2300mg/kg);
- WS106E 0.80m bgl: Aromatic >EC16 EC21 (3400mg/kg vs a GAC of 1900mg/kg);
- WS106E 0.80m bgl: Aromatic >EC35 EC44 (16000mg/kg vs a GAC of 1900mg/kg);
- WS111E 0.80m bgl: Aliphatic >EC12 EC16 (170mg/kg vs a GAC of 59mg/kg);
- WS118E 0.80m bgl: Aliphatic >EC12 EC16 (110mg/kg vs a GAC of 59mg/kg);

The elevation for Aliphatic >EC12-EC16 within WS111E and WS118E are considered marginal and within a hydrocarbon fraction that has a very low mobility within water and therefore are immobile.

The presence of petroleum hydrocarbons at WS106E (between 0.80m bgl and 1.00m bgl) requires further consideration.

7.3.2.4 Benzene, Toluene, Ethylbenzene and Xylene (BTEX) and Methyl Tertiary Butyl Ether (MTBE)

All BTEX and MTBE were found to be below the laboratory limit of detection. No further consideration is required.

7.3.2.5 Volatile organic compounds (VOC) and Semi Volatile organic compounds (SVOC) – soils

There were no elevated concentrations of VOCs or SVOCs within the soils, they were below the laboratory limit of detection.

7.3.3 Risk evaluation

The screening exercise has identified visual asbestos containing materials, hotspots of PAHs and a hotspot for petroleum hydrocarbons in Made Ground at concentrations above the GAC. These are considered further here to assess if the exceedance may be acceptable with respect to the proposed development. The phrase 'further assessment' does not necessarily mean that the soil is 'contaminated' or not fit for use.

7.3.3.1 Asbestos

There were exploratory hole locations where Asbestos Containing Materials are present in the form of laboratory confirmed Chrysotile Hard/Cement type asbestos either within the Made Ground or upon the surface locally.

Hydrock consider it plausible for asbestos to be present in any of the Made Ground soils and asbestos, (even at low concentrations), represents an unacceptable risk and mitigation measures will be required in this area of the site.

7.3.3.2 Benzo(a)pyrene in Made Ground

Benzo(a)pyrene is present in the Made Ground with GACs between 2.8 and 70mg/kg, which is a significant exceedance of the GAC (1.6mg/kg). These significant exceedances are considered to be an unacceptable risk, which requires mitigation for the proposed end use.

7.3.3.3 PAHs at WS111E in the Made Ground

Significant concentrations of PAHs were encountered within the Made Ground in WS111E at 0.20m bgl. These significant exceedances are considered to be an unacceptable risk, which require mitigation for the proposed end use.

7.3.3.4 Petroleum hydrocarbons

One hotspot of petroleum hydrocarbons has been identified, at WS106E between 0.80m bgl and 1.00m bgl. This presents a potentially unacceptable risk and requires mitigation. The hotspot is present within an organic material that is unlikely to be geotechnically suitable to remain below the proposed road which will transect through this area.

7.4 Plant life risk assessment

7.4.1 Risk estimation and evaluation

Priority phytotoxic chemical concentrations have been screened against published values to determine the likely risk to plant growth and the findings presented in Appendix E. As with human health, statistical testing is used where data sets are suitable, otherwise individual sample test results are compared directly with the screening values.

Within the soils, there were no elevated concentrations for determinands that cause potential concern to plant life when compared to the GAC. Hydrock does not believe there to be an unacceptable risk to plant life from contamination within the likely reused topsoil or natural subsoils present onsite and no additional consideration is required with regard to risks to plant life.

7.5 Pollution of controlled waters risk assessment

7.5.1 Risk estimation

The risks to groundwater and surface water from contaminants on site have been assessed in accordance with the Environment Agency (2006) Remedial Targets Methodology (RTM).

Site contaminant loadings are compared with relevant screening values (Water Quality Targets), which are linked to the Conceptual Model.

Acceptable WQT are defined for protection of human health (based on Drinking Water Standards (DWS)) and for protection of aquatic ecosystems (Environmental Quality Standards (EQS)).

As related specifically to this site, the data are compared with criteria selected in accordance with the methodology presented in Appendix I. This methodology involves selecting which of several alternative risk scenarios apply in this case. The assessment is presented in Table 7-3 below, with the justification for the scenarios selected explained in the following text:

- The site does not lie within a groundwater source protection zone and there are no groundwater abstraction wells within 1km of the site boundary;
- Although the Head deposits are classified as a Secondary A aquifer the productive horizon within the Head across the site appears to be a layer of sand encountered at 9.20m bgl. The ground investigation confirmed that across the site there is between 8.80m and 14.85m of low permeability clays between the Made Ground and the productive sand horizon. Therefore, there is not

considered to be a viable pathway for shallow groundwater or leachable contaminants to reach the deeper sand within the Head.

- The Singleton Mudstone Member is classified as a Secondary B aquifer which produces very low yields of groundwater due to its inherent low permeability clays/mudstone or siltstones so future abstraction from the Mudstone member is considered unlikely.
- A large fishing pond is present in the northeast of site, with a second smaller pond present in the west. There are several drainage ditches running across the site. There are no other pertinent water features within 250m of site.
- Wymott Brook is situated 607m west of the site boundary. Groundwater appears to be flowing west towards Wymott Brook suggesting hydraulic continuity with the Brook.

Table 7-3: Summary of water quality risk assessment protocol

Hydrock	Water body receptors	Secondary receptors	Example contaminant linkages	RTM level and data used	Water quality targets
В	Groundwater. Leachate testing	Aquatic ecosystem.	Contaminants from site leach or seep into a groundwater body that feeds inland surface water by base flow. The surface water may be an aquatic ecosystem.	RTM Level 1 - Soil leachate/pore water/calculation. RTM Level 2 - Groundwater. Direct comparison of surface water samples	EQS (inland)

Notes

Some EQS are water hardness dependent. This is measured either in the receiving surface water or in groundwater (if it is part of the pathway), or is estimated from national maps.

Inland waters EQS applicable to freshwater, 'other' waters EQS applicable to coastal or transitional waters.

This table and the results of the assessment are considered as a first screening for potential risks of pollution of Controlled Waters. More specific requirements may be stipulated by the relevant Agency.

The results of the screening assessment are presented in Appendix E and are summarised in Table 7-4.

The inland waters EQSs for Cu, Pb, Mn, Ni and Zn are based on bioavailable fraction and so the M-BAT software tool (WFD-UKTAG July 2014) has been used to calculate site-specific Predicted No Effect Concentrations (PNEC) dissolved values, which have been used as EQS for comparison against measured dissolved metal concentrations and consider the calculated bioavailable fraction.

There are no WQT for petroleum hydrocarbon fractions in water. However, because of the sensitivity of the water environment to petroleum hydrocarbons, an initial screening exercise is also included in Table 7-4 irrespective of the assessment scenario(s) stated in Table 7-3.

In some instances, the reporting limit (or detection limit) quoted by the laboratory may be greater than the WQT that it is being assessed against. As the current exercise is an initial screening assessment, further assessment of these elements has not been undertaken.

Table 7-4: Chemicals of potential concern for which further assessment is required (controlled waters)

Chemical of potential concern	Water quality target (WQT) (µg/l)	Basis for water quality target	No. samples	No. samples above LoD	Min. (μg/l)	Max. (μg/l)	No. samples exceeding WQT and above LoD
Soil Leachate Da	ita						
Cadmium	0.08	EQS	5	1	<0.08	0.1	1
Lead	1.2	EQS	5	5	3.1	8.1	5
Copper	1	EQS	5	5	4	25	5
Zinc	12.3	EQS	5	5	2.7	18	2
Phenol	7.7	EQS	5	3	<1	12	2
Deep Groundwa	ter						
Cobalt	3	EQS	4	4	2.2	4.3	1
Copper	1	EQS	8	6	<0.5	7.4	5
Chromium (III)	4.7	EQS	8	8	3.9	6.7	5
Manganese	123	EQS	8	8	0.34	2200	5
Nickel	4	EQS	8	8	3.1	11	5
Ammoniacal Nitrogen	300	EQS	4	4	130	4000	3
Sulphates	400000	EQS	4	4	112000	2370000	1
Ali >EC10-12	10	Withdrawn	6	2	<10	230	2
Ali >EC12-16	10	PWS*	6	2	<10	52	2
Aro >EC10-12	10		6	1	<10	82	1
Aro >EC12-16	10		6	1	<10	34	1

Note: the maximum recorded value is compared with the water quality target.

7.5.2 Risk evaluation

7.5.3 Leachate Analysis

There were minor exceedances of EQS values from leachate testing on samples of Made Ground. The exceedance for cadmium, copper, lead, zinc and phenol are considered marginal and Hydrock does not believe they pose a risk to controlled waters.

7.5.4 Groundwater Analysis

Metals and metalloids

The groundwater is characterised by minor exceedance for metals and metalloids. The exceedance for cobalt, copper, chromium and nickel are considered marginal and Hydrock does not believe they pose a risk to controlled waters.

The exceedances for Manganese found within groundwater are considered to be associated with geology and are naturally occurring elevated concentrations.

^{*} The Water Supply Regulations 1989 and the Private Water Supply Regulations 1991 both contained a prescribed concentration of 10 μ g/l for 'dissolved or emulsified hydrocarbons (after extraction with petroleum ether); mineral oils. This was removed when these Regulations were updated in 2000 (consolidated 2007) and 2009, respectively. However, 10 μ g/l is used in this report as an initial screening assessment as it is frequently the preferred approach of the Environment Agency.

Inorganics

The concentrations of sulphate found within groundwater are considered to be associated with geology and are naturally occurring elevated concentrations.

Although ammoniacal nitrogen within the groundwater in the head deposits is elevated at $400\mu g/l$, given the depth of this groundwater table circa 9.20m bgl it is unlikely to recharge the onsite drainage ditches and ponds which are more likely recharged by rainfall events and overland flow. An Environment Agency sampling station downstream from site on the River Lostock below Leyland Etw (Sampling station ID NW-88003183) found ammoniacal nitrogen concentrations below the EQS in the order of 163 and $253\mu g/l$. There is no evidence that ammoniacal nitrogen concentrations within groundwater underlying the site are impacting on controlled waters.

Organics

Within the groundwater within the Head Deposits there were exceedances for Aliphatic >EC10-12 and >EC12-16 ranges. As shown in CL: AIRE, 2017 guidance on hydrocarbon fraction mobility, these fractions are of very low mobility within the groundwater and are unlikely to impact on controlled waters. The exceedance for Aromatic >EC10-12 (82 μ g/l vs 10 μ g/l EQS) and Aromatic >EC12-16 (34 μ g/l vs 10 μ g/l EQS) are considered marginal and isolated exceedance. Also, at the Environment Agency sampling station downstream from site on the River Lostock there are no references made to visual or olfactory evidence of hydrocarbon contamination within any of the surface water samples collected.

Summary

Whilst there are concentrations of Chemicals of Potential Concern elevated above the water quality criteria, based on the investigation works undertaken to date and subject to agreement with the Environment Agency, Hydrock does not believe the site poses a significant risk to Controlled Waters.

7.6 Ground gases risk assessment

7.6.1 Data

It is judged from the available evidence that the gas generation potential at the site is low to moderate (due to the deep made ground associated with former site uses and potentially infilled ponds) and that the sensitivity of the development is moderate (due to the long-term inhabitancy of the prison block). Consequently, and in accordance with CIRIA C665 (Table 5.5a and 5.5b), an appropriate minimum monitoring regime is six readings over 3 months, provided other monitoring requirements are also met, such as prevailing atmospheric pressure conditions (for example, BS 8485:2015 +A1:2019 suggests monitoring should include a period of falling atmospheric pressure).

Hydrock has undertaken six readings required and E3P undertook two monitoring visits, monitoring has been completed during periods of falling and low atmospheric pressure. As such, the conclusions presented below are final.

7.6.2 Assessment

The risks associated with the ground gases methane (CH_4) and carbon dioxide (CO_2) have been assessed using BS 8485:2015 +A1:2019, which cites the guidelines published by CIRIA (Wilson et al 2007) (known as Situation A).

There is an alternative assessment method described by the NHBC (Boyle and Witherington 2007) (known as Situation B). Whilst 'Situation B' may also be suitable for the assessment, it is Hydrock's opinion that the NHBC Guidelines are not at the current time fully aligned with current ground gas risk assessment principles (as described in BS 8485:2015 +A1:2019). As such, 'Situation A' has been chosen as the means by the gas risk will be assessed.

The assessment guidelines published by CIRIA are based on interpretation of the gas concentrations and the gas flow rates, amongst other variables, and are compliant with the model procedures of LCRM. The modified Wilson and Card assessment has been used by comparing the maximum gas concentrations and gas screening values (GSV¹) in Appendix D with the published table (CIRIA Table 8.5) and the assessment is summarised in Table 7-5. The assessment is presented in Appendix D.

In addition, Table 7-5 summarises a ternary plot assessment of the data (assessment of ground gas ratios ($O_2 + N_2$, CO_2 and CH_4)), undertaken in general accordance with guidance by Wilson et. al. (2018). The ternary plot assessment is presented in Appendix D.

Table 7-5: Ground gas risk assessment

	Min	Max	Typical (i)	Comment
Steady Flow Rate (I/hr)	<0.1	17.6	<0.1	-
Methane (%)	<0.1	3.8	<0.1	There are occasional concentrations of carbon
Carbon Dioxide (%)	0.6	10.1	0.1 - 6.8	dioxide, elevated above 5% and three reading of methane between 1.4 and 4.6%. Assessment of the data on a ternary plot of ground gas ratios (O ₂ + N ₂ , CO ₂ and CH ₄), in accordance with guidance by Wilson et. al. (2018), indicates the ground gas present is likely to represent microbial respiration of organic material in soil.
Carbon Monoxide (ppm)	<1	26	<5	All values were below the HSE carbon monoxide action level of 20ppm apart from one occasion when a concentration of carbon monoxide of 26ppm was marginally elevated, recorded in BH1505.
Hydrogen Sulphide (ppm)	<1	<1	<1	-
Oxygen (%)	0.5	21.6	>15	-
Carbon Dioxide GSV (I/hr)	0.01	1.24	<0.07	CS1
Methane GSV (I/hr)	0.00	0.19	<0.07	CS1

⁽i) Hydrock assume that values are considered to be atypical if 95% or more of the remaining data are less than the value under consideration

For the purposes of the calculation, where the recorded gas flow rate is below the manufacturer's limit of detection for the instrument used, the detection limit has been adopted for the gas flow rate

Although elevated concentrations of carbon dioxide >5% where recorded on 23 out of 57 readings these response zones are within the Head Deposits or Glacial Till, where no notable gas source was encountered during drilling of the boreholes. Also, the calculated gas screening values related to these elevated carbon dioxide concentrations are classified as CS1.

¹ Note: GSV is synonymous with 'site characteristic hazardous gas flow rate' (Q_{hgs}) of BS 8485:2015 +A1:2019 Table.

Locally within WS102 elevated methane was recorded between 1.4 and 3.8% and carbon dioxide between 5.3 and 7.5%. As part of the enabling works due to the compressible nature of the backfill within the pond it will require over excavation, therefore removing the organic Made Ground which poses a gas risk. Following removal of the Made Ground associated with the pond, post enabling works gas monitoring should be complete to confirm if gas conditions remain as CS1.

On one occasion within BH103, BH105 and BH107A the gas screening values for carbon dioxide were classified as CS2 conditions, however on all other monitoring round within these boreholes the gas screening values for carbon dioxide were characterised as CS1. Also, these boreholes have response zones within the Head Deposits where no notable gas source was encountered during the drilling of the boreholes.

As indicated in Table 7-5, the computed GSV for carbon dioxide and methane indicates CS1 conditions, and whilst carbon dioxide concentrations have been measured at concentrations 'typically' above 5% and three reading of methane between 1.4 and 4.6%, assessment of the data using ternary plots indicates the ground gas present is likely to represent microbial respiration of organic material in soil, which is a low risk. As such, the site is classified as Characteristic Situation 1 (Situation A). The CS1 gas regime locally at WS102 is subject to post-enabling works following removal of the pond backfill.

7.6.3 Off-site risks from carbon dioxide and methane

The National Planning Policy Framework in England requires that a developed site should be incapable of being determined as contaminated land under Part 2A of the Environmental Protection Act 1990. This position includes a consideration of the potential for off-site migration of ground gases that may impact on adjacent properties.

Consequently, it may be necessary to consider the imposition of measures to protect adjacent, off-site receptors. In this case given that there is no significant viable source of ground gas generation and the surrounding area comprises of low permeability clay of the Glacial Till there is unlikely to be a viable pathway for ground gas onsite to migrate offsite.

7.7 Construction materials risk assessment

7.7.1 Water pipelines

A formal water pipe investigation and risk assessment is beyond the scope of this report. However, the findings of this investigation have been compared to the threshold values in Water UK HBF (2014), Table 1 as far as is practicable, to give an indication of the possible restrictions to the use of plastic pipes for water supply to the site (see the reference in Appendix I for further information).

The site is predominantly previously undeveloped, with brownfield associated with the land surrounding the existing prison. Assessment has indicated no exceedance of the threshold values in the greenfield part of the site. However, locally close to the existing prison, threshold values for petroleum hydrocarbons were exceeded specifically in WS106E, WS111E and WS118E at depths of a proposed pipe of 0.80m and 1.00m bgl,

7.7.2 Other construction materials

Plastic pipes for drains and sewers are manufactured from unplasticized poly (vinyl chloride) (PVC-U), polypropylene (PP) or polyethylene (PE). These materials may be affected by the presence of organic compounds in the soil.

In accordance with the British Plastics Federation Guidance (August, 2018), locally the concentrations of petroleum hydrocarbons (TPH) are above 200 mg/kg, the pipework manufacturer should be consulted with regard the suitability of the pipework.

The implications for buried concrete are discussed in Section 6.8.

7.8 Contamination risks to ground workers

7.8.1 Introduction

Whilst risks to construction workers are not discussed in detail, the following section discusses potential risks that should be considered.

Information presented in this document is provided to assist in managing the risk associated with contamination in soil and groundwater at the site but is not definitive. The Contractors are responsible for undertaking their own assessments and assessing what risks are present and what control measures are required.

Task specific risk assessments and method statements should be in place, and risks and required mitigation measures communicated to all relevant personnel prior to the works commencing. Appropriate PPE and, if required, RPE should be provided and utilised.

7.8.2 PAH and petroleum hydrocarbons

The soils contain PAH and petroleum hydrocarbons, recorded as hotspots within Made Ground.

7.8.3 Ground Gas

It is noted that concentrations of carbon dioxide (an asphyxiant) in the soil exceed HSE Workplace Exposure Limits for personnel in the working environment of 1.5% for short term (15 minutes) exposure and 0.5% for long term exposure. Furthermore, soil concentrations of oxygen are below the HSE recommendations of 18%.

Soil gas concentrations are not necessarily reflected by those in the breathing zone, as such, all Contractors and maintenance workers should be made aware of the possible presence of carbon dioxide and should take all necessary health and safety precautions when working in trenches or confined spaces.

7.8.4 Asbestos

Occasional visible fragments of suspected asbestos cement sheeting have been identified during the ground investigation.

All site staff should be made aware that there is a likelihood of encountering further asbestos containing materials within the Made Ground anywhere on the site, and at any stage of the development. It is advised that the Contractor should supply suitable and sufficient 'Asbestos Awareness' training (specific to asbestos in soils) to all site staff who could foreseeably encounter asbestos containing materials during the course of their work.

The Contractor for each stage of works must undertake a suitable and sufficient Risk Assessment in accordance the Regulation 6 of the Control of Asbestos Regulations 2012 (CAR2012). The results of the assessment should be used to compile a methodology in accordance with Regulation 7 of CAR2012, which limits potential exposure and spread of asbestos fibre. Appropriate training should be provided to

all site staff identified within the risk assessment as having the potential to be exposed or encounter asbestos during their work in accordance with Regulation 10 of CAR2012.

It is the responsibility of the Contractor to ensure that mitigation measures are suitable and sufficient to prevent exposure to airborne asbestos so far as is reasonably practicable in accordance with Regulation 11 of CAR2012.

It is recommended that any asbestos cement sheeting encountered is handpicked under controlled conditions in accordance with HSG210 'Asbestos Essentials'. Hand picking needs to be undertaken by suitably qualified Contractors in accordance with HSE guidance and an Environmental Permit. All ACM must be suitably packaged, placed in a dedicated, covered and lockable skip pending off-site disposal to a suitably licensed waste facility.

In addition to the presence of occasional visible fragments of suspected asbestos cement sheeting, there is potential for low concentrations of asbestos fibre (<0.001%). The Contractors for each stage of works must manage the risks in accordance with HSE Guidance and CAR 2012. However, the asbestos fibres detected at the site are within a soil matrix, and if this is kept damp, this should assist in minimising the risk of the release of airborne fibres.

7.9 Findings of the generic contamination risk assessments

The potential sources, pathways and receptors identified in the desk study (Section 3) have been investigated (Sections 4 and 5) and assessed (Sections 7.2 to 7.7). A Source-Pathway-Receptor linkage assessment has been undertaken and is presented in Appendix H (Table K.2).

The final Conceptual Model is illustrated on Hydrock Drawing 19851-HYD-XX-XX-DR-GE-0009 in Appendix A.

A summary of the Source-Pathway-Receptor (SPR) contaminant linkages for which the risks may be unacceptable and require mitigation (those that are moderate or higher) are discussed in Table 7-6.

Table 7-6 assumes the following SPR linkages which have been discounted (subject to agreement) at the risk evaluation stage are confirmed by the regulators and the warranty provider as not requiring further consideration (mitigation). If these assumptions are not agreed during regulatory discussions, the conclusions as noted in Table 7-6 will need to be updated:

- The elevation for Aliphatic >EC12-EC16 within WS111E and WS118E are considered marginal and within a hydrocarbon fraction that has a very low mobility within water and therefore are immobile.
- The exceedance from the leachate testing for cadmium, copper, lead, zinc and phenol are considered marginal and Hydrock does not believe they pose a risk to controlled waters.
- Exceedance for Aliphatic >EC10-12 and >EC12-16 ranges are considered not to pose a risk to controlled waters to their very low mobility.
- The exceedance for Aromatic >EC10-12 (82 μ g/l vs 10 μ g/l EQS) and Aromatic >EC12-16 (34 μ g/l vs 10 μ g/l EQS) are considered a marginal and isolated exceedance.
- The exceedances for Manganese and Sulphate found within groundwater are considered to be associated with geology and are naturally occurring elevated concentrations.
- The exceedance from the groundwater analysis for cobalt, copper, chromium and nickel are considered marginal and Hydrock does not believe they pose a risk to controlled waters.

• Ammoniacal nitrogen within the groundwater is not considered to pose a risk to controlled water given the concentrations within the River Lostock downstream being below the EQS. There is no evidence that ammoniacal nitrogen concentrations within groundwater underlying the site are impacting on controlled waters.

Table 7-6: Residual risks following risk evaluation

Contam	ninant Linkage		Comments		
Pollutant Linkage	Sources	Pathways	Receptors	General	Mitigation
PL 1.	PAH hotspots within the Made Ground.	Ingestion.	Human health.	Significant exceedance of the GAC.	Mitigation required in the form of excavation, disposal and verification.
PL 2.	Hotspot of petroleum hydrocarbons within WS106E between 0.80m and 1.00m bgl.	Ingestion or inhalation.	Human health.	Significant exceedance of the GAC.	Mitigation required in the form of excavation, disposal and verification.
PL 3.	Asbestos- containing materials in the Made Ground and at the surface.	Inhalation of fugitive dust.	Human health.	Hard/cement type asbestos present locally in the Made Ground and also at the surface east of the pavilion.	Any ACM encountered during earthworks will need to be handpicked and removed from site.
PL 4.	Asbestos fibres from insulation or asbestos-containing materials in the buildings.	Inhalation of fugitive dust.	Human health (site neighbours).	Asbestos noted in old buildings.	Removal will be required. However, removal under controlled conditions should limit off-site emissions
PL 5.	Unforeseen contamination below the existing farm buildings and those associated with the prison.	Ingestion, inhalation or direct contact.	Human health.	Areas not investigated due to the presence of existing buildings.	Further investigation and risk assessment required post demolition.
PL 6.	TPH within shallow soils.	Direct contact	Water supply pipes.	Locally the shallow Made Ground contains a sum of Aliphatic and Aromatic hydrocarbons above the PE pipe threshold.	Installation of "Protectaline" (or similar) pipework for the site.

Contaminant Linkage				Comments	
Pollutant Linkage	Sources	Pathways	Receptors	General	Mitigation
PL 7.	Bituminous bound hardstanding potentially containing coal tar.	Ingestion or direct contact	Human health.	The existing prison car park where the new boiler compound is proposed may contain coal tar.	Further investigation required to confirm classification of hardstanding for waste disposal purposes.

7.10 Mitigation measures

As described in Table 7-6 (and subject to regulatory agreement), Hydrock consider the following mitigation is required to ensure the site is suitable for use for the proposed end use. These mitigation works will be undertaken in a number of phases and can be separated into:

- Demolition Phase;
- Enablement Phase; and
- Construction Phase.

There will also be a requirement to undertake works to ensure the site is geotechnically suitable.

The methodology for the remediation should be presented in a Remediation Strategy (which will include the 'Implementation Plan', the 'Verification Plan' and the 'Long Term Monitoring and Maintenance Plan'), which will need to be submitted to the warranty provider and the regulatory authorities for approval.

The writing and approval of a Materials Management Plan will be required to allow reuse of suitable material at the site. As treatment of Made Ground is required, an appropriate Environmental Permit will also be required.

Verification reports by a suitably qualified independent geo-environmental specialist will be required following completion of any remedial works (including hotspot removal and validation).

7.10.1 Demolition Phase

The existing buildings and associated infrastructure require demolition and the following works are considered necessary during the Demolition Phase of works:

- refurbishment / demolition asbestos survey;
- site clearance;
- removal of asbestos by specialist Contractors in accordance with the asbestos survey and relevant legislation (PL4);
- removal of above ground tanks and associated pipework;
- demolition of site buildings and ancillary structures to slab level; and

• processing the demolition arisings to a suitable specification in accordance with the WRAP 'Quality Protocol: Aggregates from inert waste'.

7.10.2 Enablement Phase

The following works are considered necessary during the Enablement Phase of works:

- break out of all hardstanding and below ground obstructions and processing for reuse in accordance with a suitable specification and a Materials Management Plan (MMP);
- removal of below ground tanks, existing drainage system and associated pipework;
- excavation, verification and disposal of hotspots for PAHs and petroleum hydrocarbons (PL1 and PL2);
- hand picking of visible cement type asbestos encountered during the earthworks and disposal of site (PL3);
- examination of soils below and around all potential point sources including stores of fuels or machinery within the existing farm buildings and excavation of impacted soils (as possible depending on site constraints) (PL5);
- further investigation in the car park where the new boiler compound is proposed to ensure the bituminous bound hardstanding does not contain coal tar (PL7).
- excavation of Made Ground and natural soils as required to allow construction with appropriate
 materials management and processing of excavated soils using a combination of: excavation and
 stockpiling and screening of soils to leave the site at the level required for the installation of a
 working platform, pavement construction and to ensure natural soils remain at cover system
 formation level to remove the requirement for a cover system.
- Post-enabling works gas monitoring is to be undertaken following removal of backfill associated with the pond (WS102) to confirm CS1 conditions apply (Section 7.6.2);
- off-site disposal of unsuitable or excess material; and
- verification during enablement works.

7.10.3 Construction Phase

The Construction Phase of works will comprise:

- appropriate materials handling and stockpiling in accordance with the Materials Management Plan (MMP):
- installation of Protectaline pipework (PL6);
- import of subsoil and topsoil in accordance with the Materials Management Plan (MMP);
- suitability qualified independent geo-environmental specialist to ensure that post earthworks natural soils remain at cover system formation level, therefore removing the requirement for simple or engineered cover systems.

8. WASTE AND MATERIALS MANAGEMENT

8.1 Introduction

The Waste Framework Directive (WFD) (2009/98/EC) defines waste as 'any substance which the holder discards or intends to discard.' In a geo-environmental context, the waste is most often 'soil' and the two main scenarios are offsite disposal of the material as a waste and/or reuse of the material on site. For cost and sustainability reasons, reuse is preferred to off-site disposal.

Section 8.2 below describes the key issues relating to off-site disposal to landfill and section 8.3 considers requirements relating to reuse of soils and materials management.

8.2 Waste disposal

8.2.1 Principles

Based on the WFD, any material excavated on site may be classified as waste and it is the responsibility of the producer of a material to determine whether or not it is waste. Where off-site disposal is undertaken, the following guidance applies.

Classification is a staged process:

- A hazardous waste is defined under the WFD as one which possesses one or more of fifteen defined hazardous properties. If a waste is not defined as hazardous, then it is non-hazardous.
- Where the materials are soil, it is then be assigned using the 'List of Waste Codes', which classifies the material as either:
 - » hazardous (17-05-03), which is defined as "soil and stones containing hazardous substances"; or
 - » non-hazardous (17-05-04), which is defined as "soil and stones other than those mentioned in 17-05-03".
 - » Hydrock utilise the proprietary assessment tool, HazWasteOnline™ to undertake this assessment.
- Waste Acceptance Criteria (WAC) testing is then undertaken if required, and are only applicable
 following classification of the waste, and only where the waste is destined for disposal to landfill.
 The WAC are both qualitative and quantitative. The WAC and the associated laboratory analyses
 (leaching tests) are not suitable for use in the determination of whether a waste is hazardous or
 non-hazardous.

It should be noted that some non-hazardous wastes may be suitable for disposal at an inert landfill as non-hazardous waste, subject to meeting the appropriate waste acceptance criteria.

It should be noted that classification must be undertaken on the waste produced, by the waste producer. Necessary sampling frequency to adequately characterise a soil population is defined within WM3.

Further discussion with regards to the characterisation process for different scenarios and waste types is provided below.

Topsoil and Peat

Topsoil and peat are biodegradable, therefore if they are surplus to requirements and cannot be reused in accordance with a Materials Management Plan, they cannot be classified as inert. As such, topsoil and peat need to be classified by a staged assessment and sampling process and would either be classified as hazardous or non-hazardous, depending upon the results of the assessment.

Greenfield Sites

Waste from completely greenfield sites may be accepted at a landfill as inert waste if it meets the requirements of paragraph 10 (wastes acceptable without testing at landfills for inert waste) of the Landfill (England and Wales) (Amendment) Regulations (2005) ('the Regulations') can be met. Paragraph 10 of the Regulations states, "soils may be able to be classified as inert waste without testing, if:

- they are single stream waste of a single waste type;
- there is no suspicion of contamination and they do not contain other material or substances such as metals, asbestos, plastics, chemicals, etc...."

As such, where the site is greenfield and the waste producer is confident about the quality of a soil (i.e., naturally occurring and uncontaminated), further sampling and laboratory testing is not necessary for the Basic Characterisation and this can be undertaken on qualitative Waste Acceptance Criteria testing.

In this instance the waste producer can characterise the waste based on visual assessment and written description of the waste in addition to supporting evidence such as a desk study assessment of the greenfield status. However, it should be noted this characterisation is subject to agreement by the landfill operator who may require testing to be undertaken to confirm classification.

Contaminated or potentially contaminated sites

If the site is brownfield, contaminated or potentially contaminated, the waste must undergo an initial waste classification exercise using background information on the source and origin of the waste and assessment of chemical test data in accordance with Environment Agency Technical Guidance WM3.

If following the initial waste classification exercise, the soils are acceptable for disposal to a non-hazardous landfill, further qualitative Waste Acceptance Criteria (WAC) testing is not required.

However, if soils are potentially able to be disposed to an inert landfill as non-hazardous waste, or require testing to determine if they can be disposed of to a stable non-reactive hazardous or hazardous class of landfill, the next stage of assessment is to undertake qualitative WAC testing. This will determine the Basic Characterisation and the landfill category at which the soils can be accepted.

Hazardous material must be subjected to WAC testing to determine whether it requires treatment before it can be accepted at the hazardous landfill, while non-hazardous material can be tested to determine whether it may be suitable for placement in an inert landfill.

8.2.2 HazWasteOnline™ assessment

As the site is brownfield, in order to inform the preliminary waste characterisation process, Hydrock has undertaken an exercise using the proprietary web-based tool HazWasteOnline™. The output of the HazWasteOnline™ assessment is provided in Appendix F and a summary of the preliminary waste classification is provided below in Section 8.2.4.

8.2.3 WAC Testing

The site is brownfield and the qualitative WAC tests are provided in Appendix F and a summary of the preliminary waste disposal options is provided below in Section 8.2.4.

8.2.4 Preliminary waste disposal options

The site is predominantly greenfield with some areas of brownfield (as proven by the desk study assessment and a visual assessment of the soils). WAC testing and the HazWasteOnline™ assessment have been undertaken. If suitable segregation of different types of waste is put in place, for soils to be disposed of, it is considered that:

- The Topsoil, Natural Soils and 'General' Made Ground is likely to be classified as non-hazardous waste.
- A WAC teste undertaken on Made Ground BH107A found the soils to be classified as non-hazardous due to total organic carbon concentrations.
- Any soils containing > 0.1% asbestos or visible asbestos containing materials would be considered as hazardous.

8.2.5 General waste comments

It should be noted that:

- It is the waste producer's responsibility to segregate the waste at source and waste producers must not mix waste materials/streams or dilute hazardous components, for example by mixing with less or non-hazardous waste on site to meet WAC limit values.
- The above preliminary assessment has been made on the basis of the soils tested as part of the ground investigation, using WAC testing and the HazWasteOnline™ assessment. However, the formal classification of waste can only be undertaken on the material to be disposed of, and by the waste producer and the receiving landfill as license conditions vary from landfill to landfill.
- Basic Characterisation should be undertaken in accordance with Environment Agency guidance by the waste producer. Hydrock can assist if required and this report will assist the characterisation. However, Basic Characterisation does not form part of the current commission and would require further assessment and testing on the wastes actually to be disposed.
- Once the waste producer has undertaken an initial Basic Characterisation on each waste stream, they can manage the soils as part of the on-site processing programme (for example, stockpiling, treatment, screening and separation). The waste producer and landfill operator will then need to agree the suite of compliance testing for regularly generated waste to demonstrate compliance with the initial Basic Characterisation prior to disposal.
- At the time of disposal, additional testing on the excavated soils to be disposed of, will likely be necessary.

- Non-hazardous and hazardous soils require pre-treatment (separation, sorting and screening) prior to disposal.
- The costs for disposal of non-hazardous and hazardous soils are significant compared to disposal of inert material.
- In addition to disposal costs, landfill tax will be applicable. Non-hazardous and hazardous waste will generally be subject to the Standard Rate Landfill Tax. Inert or inactive waste will generally be subject to the Lower Rate Landfill Tax. The landfill tax value changes each April and can be found at https://www.gov.uk/government/publications/rates-and-allowances-landfill-tax/landfill-tax-rates-from-1-april-2013.
- Before a waste producer can move waste to a landfill site for disposal, they need to check the landfill site has the appropriate permit and must have completed the following²:
 - » Duty of care transfer note / Hazardous Waste consignment note, including comment as to if pre-treatment has been undertaken; and
 - » Basic Characterisation of the waste, to include: description of the waste; waste code (using list of wastes); composition of the waste (by testing, if necessary) and; WAC testing (if required).

8.3 Materials management

8.3.1 Introduction

Soils that are to remain on site, should be managed and reused in accordance with a Materials Management Plan (MMP), prepared in accordance with 'The Definition of Waste: Development Industry Code of Practice', Version 2 (CL:AIRE), known as the DoWCoP. Where all aspects of the DoWCoP are followed the soils are considered not to be waste, because they were never discarded in the first place.

Version 2 of the DoWCoP clearly sets out the principles and an outline of the requirements of a MMP. The following compliance criteria must be seen to apply to the MMP for the site:

- Factor 1: Protection of human health and protection of the environment.
- Factor 2: Suitability for use, without further treatment.
- Factor 3: Certainty of Use.
- Factor 4: Fixed Quantity of Material.

The reuse of soils at sites should be considered during the planning and development design process so that compliance with issues such as fixed quantity and certainty of use clearly relate to agreed site levels. Suitability of Use is normally evident from the remediation strategy or the design statement, which form an integral part of a MMP. However, some soils may need to be tested post-excavation to prove they are suitable for use.

Once the MMP is finalised, it must be declared by a Qualified Person (QP). The Declaration is an on-line submission as part of which the QP is required to confirm that the declaration is being made before the relevant works have commenced (i.e., it is not a retrospective application).

 $^{^2}$ ENVIRONMENT AGENCY. November 2010. Guidance on waste acceptance procedures and criteria. Waste acceptance at landfills. The Environment Agency.

Once all material movements have been completed in accordance with the MMP a verification report must be produced, kept for 2 years and provided to the EA on request.

It should be noted that failure to comply with the requirements of the DoWCoP when re-using materials has potentially significant consequences for the waste holder. The risk is that the reused materials are still regarded as a waste that has been illegally deposited. From 1 April 2018, the scope of Landfill Tax has been extended to sites operating without the appropriate environmental disposal permit, and operators of illegal waste sites will now be liable for Landfill Tax. Further information is available at: https://www.gov.uk/government/publications/landfill-tax-disposals-not-made-at-landfill-sites.

If soils are excavated and reused on sites (or moved to another site) without a MMP, exemption, or appropriate Permit in place, anyone who knowingly facilitates the disposal may be 'jointly and severally liable' to any assessment of tax, fines or prosecution.

8.3.2 Materials management scenarios

The materials management scenarios present on site are discussed below.

It should be noted that more than one scenario may apply, dependent upon where the soils are proposed for reuse.

8.3.2.1 Clean, naturally occurring materials – reused on the site of origin

Where soils are naturally occurring, uncontaminated and are reused on the site they are excavated (i.e. greenfield site with documented site history, with no Made Ground), they will fall outside the Waste Framework Directive (WFD) (i.e. they will not be a waste when reused on the site of origin).

However, there needs to be certainty of that reuse, and evidence is necessary to support this strategy, for example through information provided during the planning process. The onus is on the developer to demonstrate that the materials are not a waste and will never become a waste. As such, a Materials Reuse Strategy is recommended to show certainty. Alternatively, if the volume of material is under 1,000 tonnes, then a U1 waste exemption may be applied for from the Environment Agency.

It may be noted that some 'clean naturally occurring materials' may still fail the 'suitable for use' test, for example, soils with a naturally high organic content may not be suitable for use because of their propensity to produce ground gases such as methane. Rules regarding other more unusual circumstances such as where natural soils contain an unacceptably high mineral content are described in the DoWCoP.

8.3.2.2 Made Ground and other contaminated soils

On sites where Made Ground or contaminated soils are present, any soils excavated will be a waste as soon as they are excavated (even if they are clean, naturally occurring materials), unless they are subject to reuse in accordance with the DoWCoP. As such, for any brownfield site or a site where Made Ground is present and soils are being moved and reused, the materials could be deemed a waste, subject to either:

- a Materials Management Plan (MMP), to prevent the material being classified as a waste following reuse; or
- an exemption (for limited volumes); or

• an environmental permit, dependant on its status.

Other commonly occurring circumstances are:

If Made Ground is being moved between sites, it must be ensured that appropriate permits are in place to ensure the soils are not classified as a waste. Made Ground cannot be moved between sites under DoWCoP alone and would require relevant permits as part of the MMP documentation for the Hub site the material is being treated at.

8.3.2.3 Made Ground and other contaminated soils

All recycled materials (6F2 etc.) must be produced under the 2013 WRAP 'Quality Protocol: Aggregates from inert waste', whether on site or off-site. If they are not, they will be deemed a waste and can only be used on site under a permit. More information can be found at https://www.gov.uk/government/publications/quality-protocol-production-of-aggregates-frm-inert-waste.

8.3.2.4 Geotechnical improvement requirements

Construction activities carried out on uncontaminated soils solely for the purpose of improving geotechnical properties e.g., lime / cement modification, are not generally regarded as waste treatment operations and do not require a permit.

However, should processing be needed (such as screening, treatment or improvement), that would constitute a waste activity and require a mobile treatment permit. This may be as simple as removing oversize material with an excavator bucket, to using a riddle bucket to remove hardcore to full mechanical screening.

9. UNCERTAINTIES AND LIMITATIONS

9.1 Site-specific comments

Due to the presence of existing farm and prison buildings, the ground investigation was unable to target these areas. Further investigation may be required post demolition.

9.2 General comments

Hydrock Consultants Limited (Hydrock) has prepared this report in accordance with the instructions of Pick Everard on behalf of the Ministry of Justice (the Client), by email dated 30 July 2021 under the terms of appointment for Hydrock, for the sole and specific use of the Client and parties commissioned by them to undertake work where reliance is placed on this report. Any third parties who use the information contained herein do so at their own risk. Hydrock shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared or for use of the report by any parties not defined in Hydrock's appointment.

This report details the findings of work carried out in August and September 2021. The report has been prepared by Hydrock on the basis of available information obtained during the study period. Although every reasonable effort has been made to gather all relevant information, not all potential environmental constraints or liabilities associated with the site may have been revealed.

Hydrock has used reasonable skill, care and diligence in the design of the investigation of the site and in its interpretation of the information obtained. The inherent variation of ground conditions allows only definition of the actual conditions at the locations and depths of trial pits and boreholes at the time of the investigation. At intermediate locations, conditions can only be inferred.

Groundwater data are only representative of the dates on which they were obtained and both levels and quality may vary.

Unless otherwise stated, the recommendations in this report assume that ground levels will remain as existing. If there is to be any re-profiling (e.g., to create development platforms or for flood alleviation) then the recommendations may not apply.

Information provided by third parties has been used in good faith and is taken at face value; however, Hydrock cannot guarantee its accuracy or completeness.

Where the existing report(s) prepared by others have been provided by the Client, it is assumed that these have been either commissioned by the Client, or can be assigned to the Client, and can be relied upon by Hydrock. Should this not be the case Hydrock should be informed immediately as additional work may be required. Hydrock is not responsible for any factual errors or omissions in the supplied data, or for the opinions and recommendations of others. It is possible that the conditions described may have since changed through natural processes or later activities.

The work has been carried out in general accordance with recognised best practice. The various methodologies used are referenced in Appendix I. Unless otherwise stated, no assessment has been made for the presence of radioactive substances or unexploded ordnance. Where the phrase 'suitable for use' is used in this report, it is in keeping with the terminology used in planning control and does not imply any specific warranty or guarantee offered by Hydrock.

The chemical analyses reported were scheduled for the purposes of risk assessment with respect to human health, plant life and controlled waters as discussed in the report. Whilst the results may be

useful in applying the Hazardous Waste Assessment Methodology given in Environment Agency Technical Guidance WM3, they are not primarily intended for that purpose and additional analysis will be required at the time of disposal to fully classify waste. Discussion and comment with regards to waste classification are preliminary and do not form the requirements of 'Basic Characterisation' as required.

Assessment and testing for the presence of coal tar has only been completed at the locations of exploratory holes undertaken for risk assessment purposes. This investigation is not designed to provide a definitive assessment of the risk from coal tar, nor the waste classification for bituminous bound pavement arisings at the site.

Unless otherwise stated, at the time of this investigation the future routes of water supply pipes had not been established. This investigation and sampling strategy may not be fully compliant with UKWIR recommendations. Consequently, a targeted investigation and specific sampling and chemical testing may be required at a later date once the routes of the supply pipes are known. In addition, it is recommended that the relevant water supply company be contacted at an early stage to confirm its requirements for assessment, which may not necessarily be the same as those recommended by UKWIR.

Whilst the preliminary risk assessment process has identified potential risks to construction workers, consideration of occupational health and safety issues is beyond the scope of this report.

The non-specialist UXO screening has been undertaken for the purposes of ground investigation only (i.e., low risk activity in accordance with CIRIA Report C681). Further assessment should be undertaken with regards to other higher risk activities e.g., construction.

Please note that notwithstanding any site observations concerning the presence or otherwise of archaeological sites, asbestos-containing materials or invasive weeds, this report does not constitute a formal survey of these potential constraints and specialist advice should be sought.

Any site boundary line depicted on plans does not imply legal ownership of land.

10. RECOMMENDATIONS FOR FURTHER WORK

Following the ground investigation works undertaken to date, the following further works will be required:

- demolition asbestos survey;
- specialist UXO/UXB risk assessment in accordance with CIRIA Report C681 with regard to construction risk;
- supplementary ground investigation in the existing prison car park and assessment in accordance with ADEPT & CWF Guidance (August 2019) to fully assess potential bituminous bound pavement arisings with regards to the presence of coal tar and waste disposal;
- discussion and agreement with utility providers regarding the materials suitable for pipework;
- discussions with regulatory bodies and the warranty provider regarding the conclusions of this report;
- assessment of tree influence on foundations and design of foundations;
- discussions with piling Contractors regarding conclusions of this report and design of the piles;
- provision of geotechnical design for the Category 2 structures (earthworks and foundations);
- production of a Remediation Strategy and Verification Plan (and agreement with the regulatory bodies and the warranty provider);
- production of a Materials Management Plan relating to reuse of soils at the site;
- remediation and mitigation works; and
- verification of the earthworks, remediation and mitigation works.

11. REFERENCES

ASSOCIATION OF GROUND INVESTIGATION SPECIALISTS. 2006. Guidelines for Good Practice in Site Investigation. Issue 2. AGS, Beckenham.

ASSOCIATION OF GROUND INVESTIGATION SPECIALISTS. 2019. Waste Classification for Soils – A Practitioners' Guide. AGS, Beckenham.

ASSOCIATION OF DIRECTORS OF ENVIRONMENT, ECONOMY, PLANNING & TRANSPORT (ADEPT) AND CONSTRUCTION WASTE FORUM (CWF). August 2019. Managing Reclaimed Asphalt. Highways and Pavements. An ADEPT and Construction Waste Forum Guidance Note.

BRE. 1980. Low-rise buildings on shrinkable clay soils: Part 1. BRE Digest 240. Building Research Establishment. Garston.

BRE. 2016. Soakaway design. BRE DG 365. BRE, Garston.

BRE. 2004. Working platforms for tracked plant: good practice guide to the design, installation, maintenance and repair of ground-supported working platforms. BR470. BRE, Garston.

BRE. 2005. Concrete in aggressive ground. BRE Special Digest 1, 3rd Edition. BRE, Garston.

BRITISH PLASTIC FEDERATION. August 2018. 'Designing Drains and Sewers for Brownfield Sites. Guidance Notes'. BPF Pipes Group (https://www.bpfpipesgroup.com/media/29155/Designing-drains-and-sewers-for-brownfield-sites.pdf)

BRITISH STANDARDS INSTITUTION. 2015. Code of Practice for Foundations. BS 8004. BSI, London.

BRITISH STANDARDS INSTITUTION. 2003. Geotechnical investigation and testing - Identification and classification of rock - Part 1: Identification and description. BS EN ISO 14689-1 Incorporating Corrigendum No.1. BSI, London

BRITISH STANDARDS INSTITUTION. 2015+A2 2019. Concrete – complementary British Standard to BS EN 206-1 – Part 1: Method of specifying and guidance to the specifier. BS 8500-1+A2 2019. BSI, London.

BRITISH STANDARDS INSTITUTION. 2007. Eurocode 7 – Geotechnical design - Part 2: Geotechnical investigation and testing. BS EN 1997-2. BSI, London.

BRITISH STANDARDS INSTITUTION. 2009. Code of practice for earthworks. BS 6031 Incorporating Corrigendum No.1:2010. BSI, London.

BRITISH STANDARDS INSTITUTION. 2011. Code of Practice for Investigation of Potentially Contaminated sites. BS 10175 Incorporating Amendment No. 2:2017. BSI, London.

BRITISH STANDARDS INSTITUTION. 2012. Trees in relation to design, demolition and construction – Recommendations. BS 5837. BSI, London.

BRITISH STANDARDS INSTITUTION. 2004+A1 2013. Eurocode 7 – Geotechnical design - Part 1: General rules. BS EN 1997-1+A1. Incorporating Corrigendum February 2009. BSI, London.

BRITISH STANDARDS INSTITUTION. 2015. Specification for topsoil. BS 3882. BSI, London.

BRITISH STANDARDS INSTITUTION. 2015. Code of practice for ground investigations. BS 5930. BSI, London.

CIEH and CL:AIRE. May 2008. Guidance on comparing soil contamination data with a critical concentration. Chartered Institute of Environmental Health and Contaminated Land: Applications in Real Environments, London.

CLAYTON, C. R. I. 2001. Managing Geotechnical Risk. Improving productivity in UK building and construction. Thomas Telford, London.

CL:AIRE. March 2011. The Definition of Waste: Development Industry Code of Practice, Version 2. Contaminated Land: Applications in the Real Environment (CL:AIRE), London.

CL:AIRE. March 2016. CAR-SOIL™ Control of Asbestos Regulations 2012 - Interpretation for Managing and Working with Asbestos in Soil and Construction and Demolition Materials: Industry guidance. Contaminated Land: Applications in the Real Environment (CL:AIRE), London.

CL: AIRE. March 2017. Petroleum Hydrocarbons in Groundwater: Guidance on assessing petroleum hydrocarbons using existing hydrogeological risk assessment methodologies. Industry guidance. Contaminated Land: Applications in the Real Environment (CL:AIRE), London.

CONCRETE SOCIETY, THE. 2013. Concrete industrial ground floors. A guide to design and construction. Technical Report 34 (4th Ed.). The Concrete Society, Camberley.

ENVIRONMENT AGENCY. 2006. Remedial Targets Methodology. Hydrogeological Risk Assessment for Land Contamination. The Environment Agency, Bristol.

ENVIRONMENT AGENCY. November 2010. Guidance on waste acceptance procedures and criteria. Waste acceptance at landfills. The Environment Agency.

ENVIRONMENT AGENCY. November 2011. Treatment of waste for landfill. Report – GEHO1111BVDF-E-E 913_11, Version 2 The Environment Agency. http://publications.environment-agency.gov.uk/pdf/GEHO1111BVDF-E-E.pdf

ENVIRONMENT AGENCY. 2018. Waste classification. Guidance on the classification and assessment of waste (1st Edition v1.1) Technical Guidance WM3. The Environment Agency.

ENVIRONMENT AGENCY. 2019. Land Contamination: Risk Management (LCRM). The Environment Agency.

HATANAKA, M, UCHIDA, A, KAKURAI, M, and AOKI, M. 1980. A consideration on the relationship between SPT N-value and internal friction angle of sandy soils. Journal of Structural and Construction Engineering (Transactions of AIJ). 63. 125-129. 10.3130/aijs.63.125 2.

HEALTH and SAFETY EXECUTIVE. December 2005. Construction Information Sheet 47: Inspections and Reports (CIS 47 (Rev 1)). HSE.

HEALTH and SAFETY EXECUTIVE. December 2005. EH40/2005 Workplace Exposure Limits (2nd edition 2011,). HSE.

HEALTH and SAFETY EXECUTIVE. 2014. HSG47 - Avoiding danger from underground services (Third edition). HSE.

HIGHWAYS AGENCY. 2009. Design Guidance for Road Pavement Foundations (Draft HD25). Interim Advice Note 73/06. Rev 1. Highway Agency, London.

HIGHWAYS AGENCY. 2014. Manual of Contract Documents for Highway Works, Specification for Highway Works: Volume 1, Amendment August 2014. Highway Agency, London.

THE HIGHWAYS AGENCY. 2015. Design Manual, Road and Bridges: Volume 4, Geotechnics and Drainage; Section 1, Earthworks; Part 3, HD 41/15, Maintenance of highway geotechnical assets. HD 41/15.

THE HIGHWAYS AGENCY. 2019. Design Manual for Roads and Bridges. Managing Geotechnical Risk. CD 622 Rev 0. Highway Agency, London.

MILES, J. C. H., APPLETON, J. D., REES, D. M., GREEN, B. M. R., ADLAM. K. A. M. and MYRES. A. H. 2007. Indicative Atlas of Radon in England and Wales. Health Protection Agency and British Geological Survey. Report HPA-RPD-033.

NHBC. 2021. NHBC Standards. NHBC, Milton Keynes.

PECK, R.B., HANSON, W.E., AND THORNBURN, T.H., Foundation Engineering, 2nd Edn., John Wiley, New York, 1967, p.310.

RAWLINS, B. G., McGRATH, S. P., SCHEIB, A. J., CAVE, N., LISTER, T. R., INGHAM, M., GOWING, C. and CARTER, S. 2012. The advanced geochemical atlas of England and Wales. British Geological Survey, Keyworth.

RUSKNAK and MARK. 2000. Using Point Load Test to determine the uniaxial compressive strength of coal measure rock. CDC.

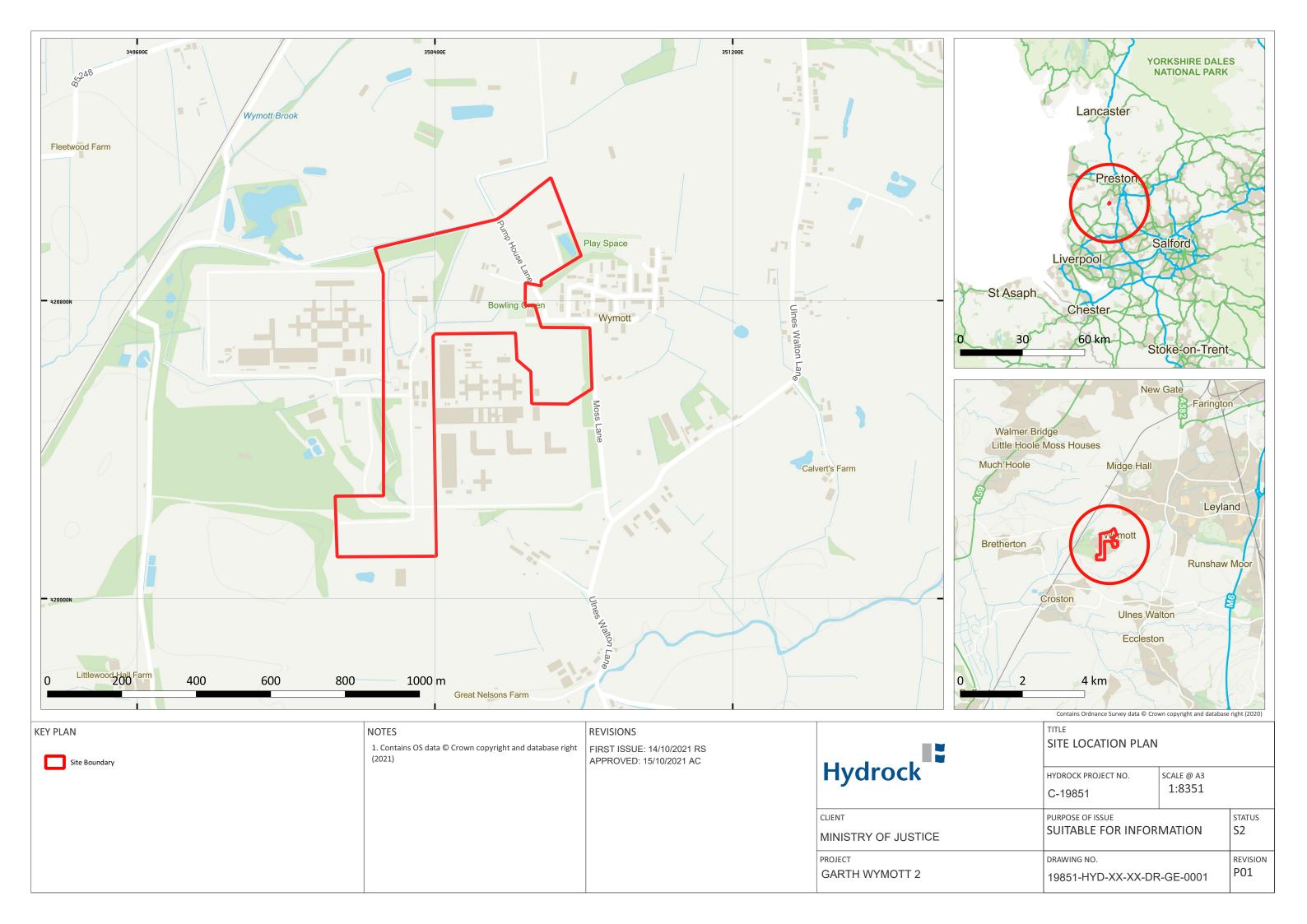
STONE, K., MURRAY, A., COOKE, S., FORAN, J. and GOODERHAM, L. 2009. Unexploded ordnance (UXO), a guide to the construction industry. CIRIA Report C681. Contaminated Land: Applications in Real Environments, London.

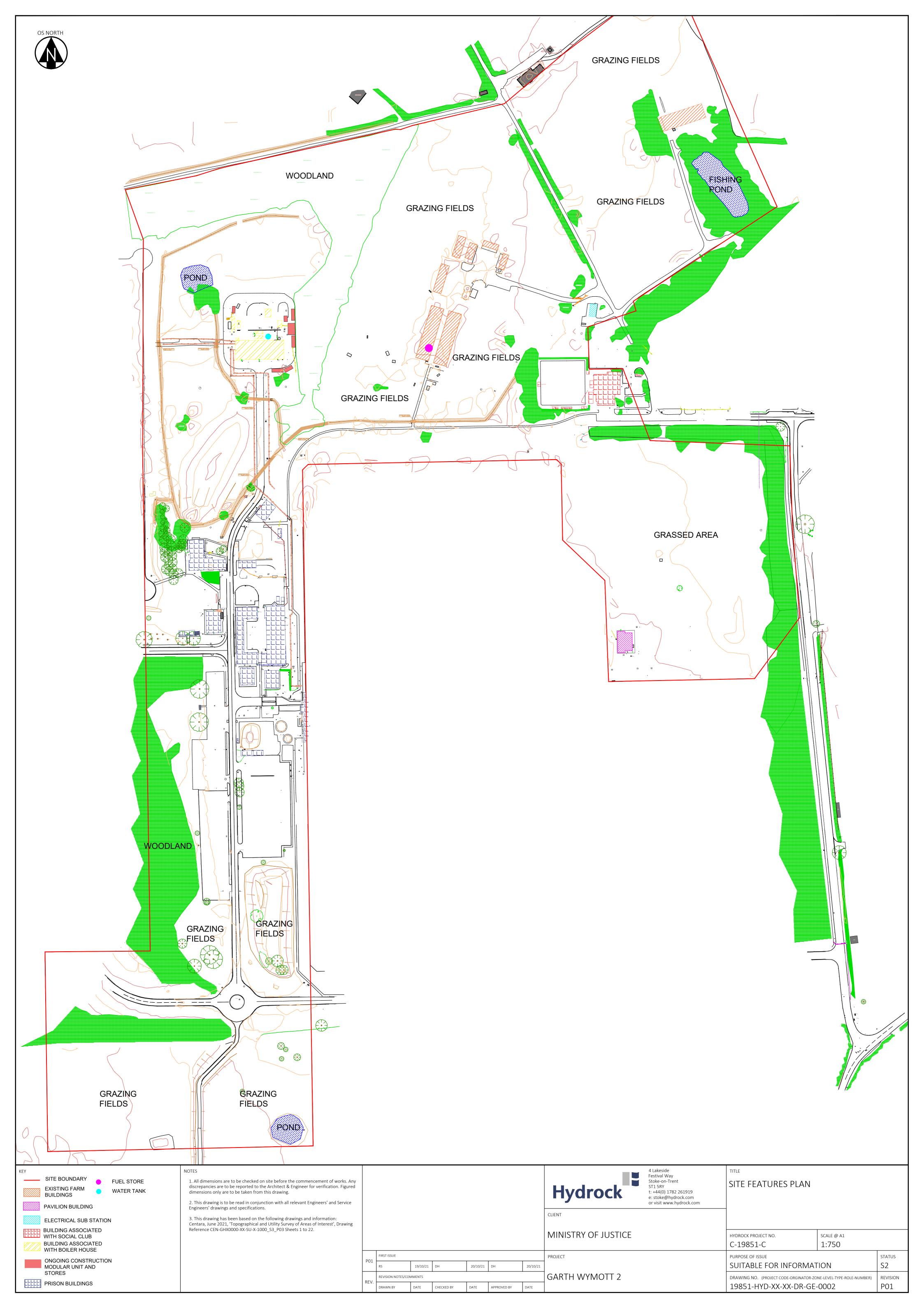
STROUD, M. A. 1975. The standard penetration test in insensitive clays and soft rocks. Proceedings of the European Symposium on penetration testing, 2, 367-375.

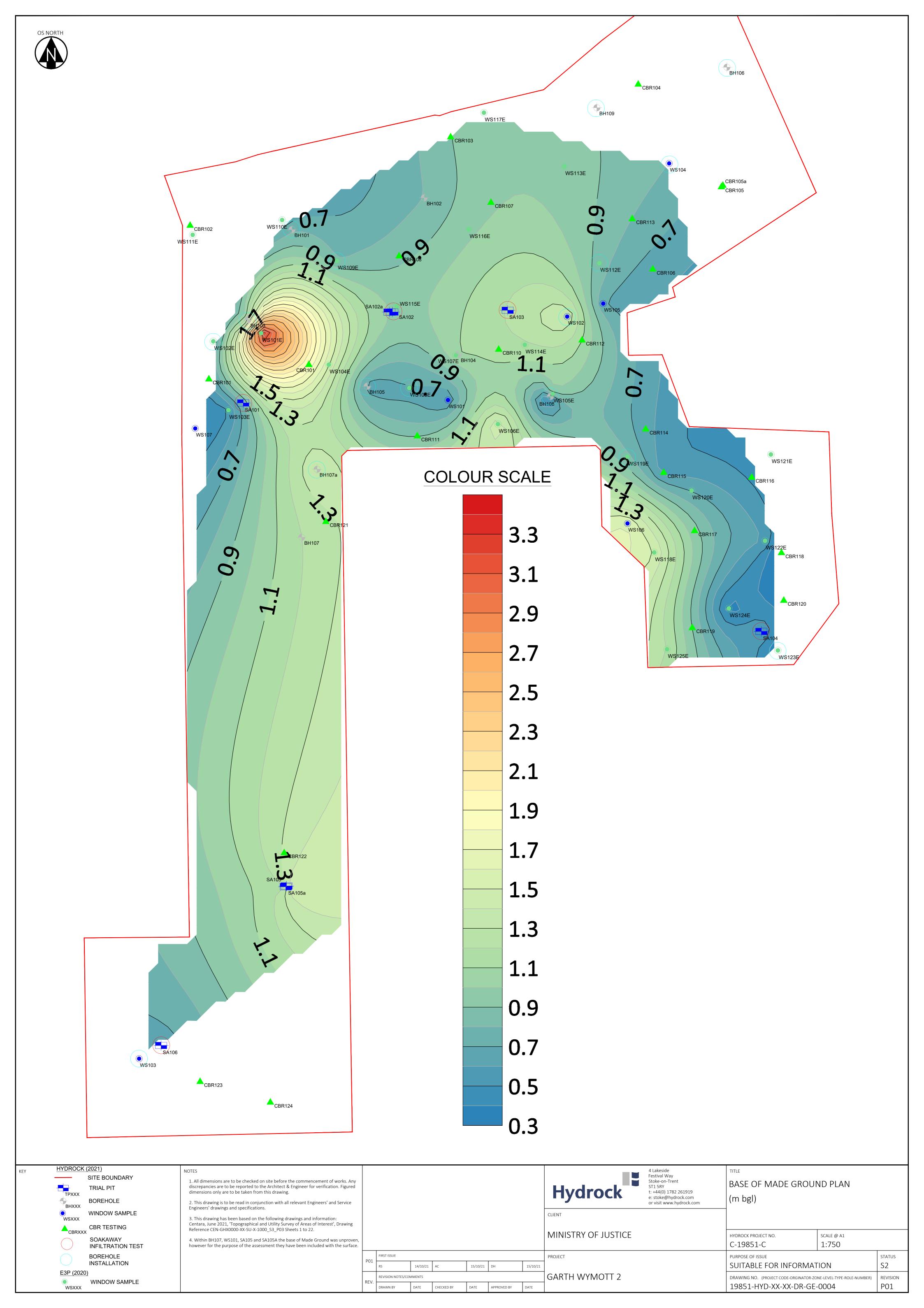
TOMLINSON. M.J. 2001. Foundation Design and Construction (6th Edition and 7th Edition). Prentice Hall Press

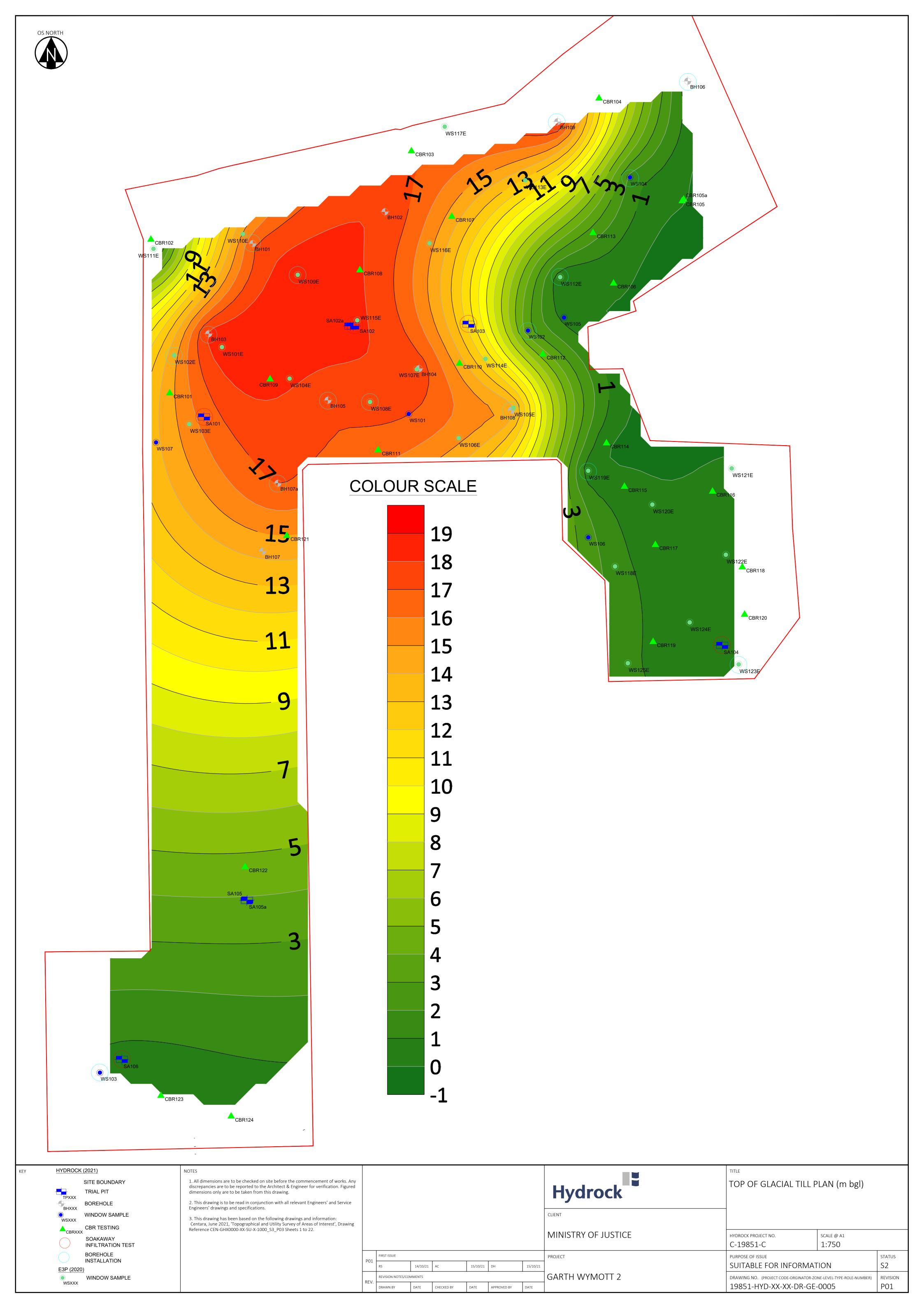
WASTE AND RESOURCES ACTION PROGRAMME (WRAP). October 2013. Quality Protocol. Aggregates from inert waste. End of waste criteria for the production of aggregates from inert waste.

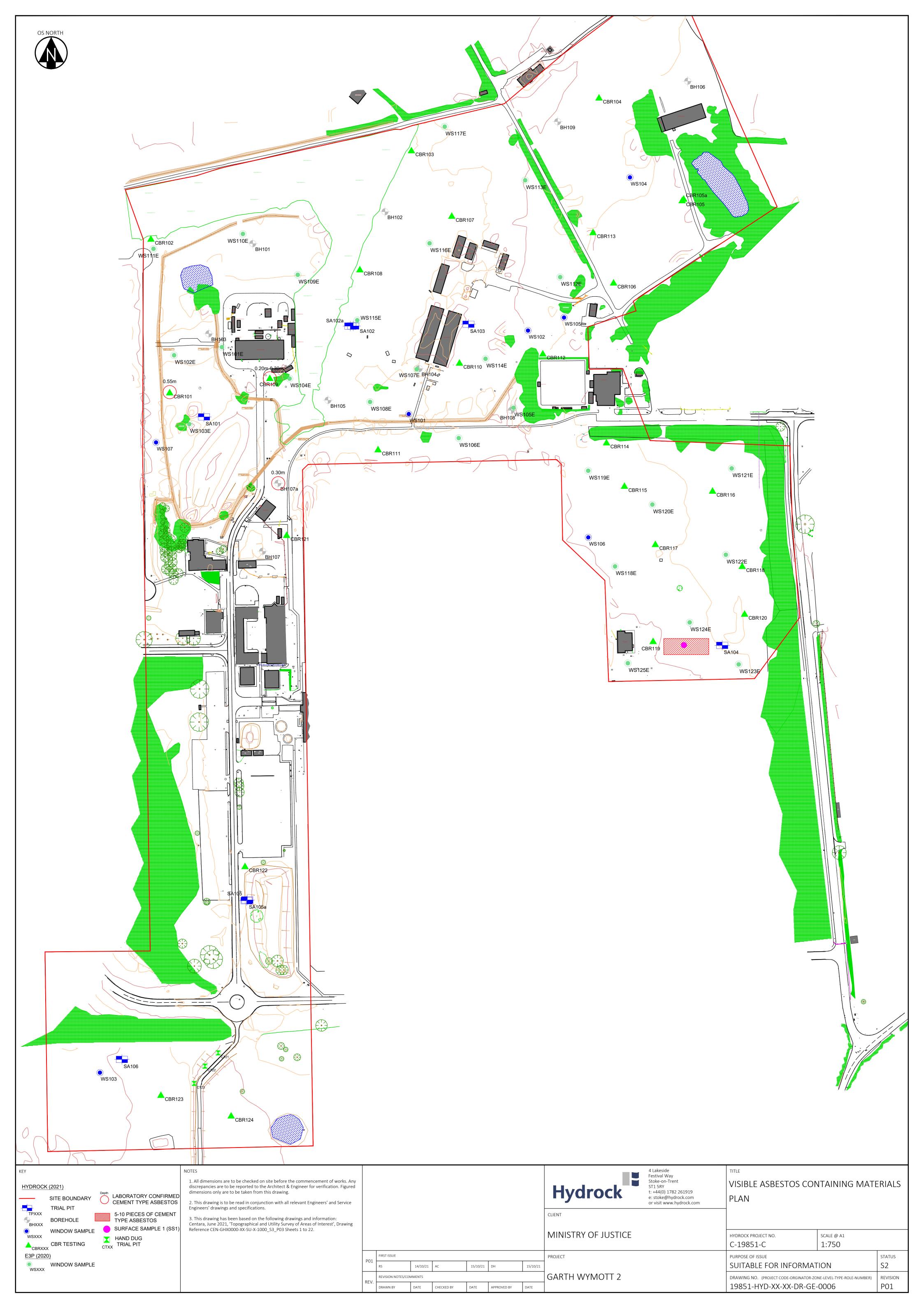
WATER UK HBF. January 2014. Contaminated Land Assessment Guidance. Water UK and the Home Builders Federation.

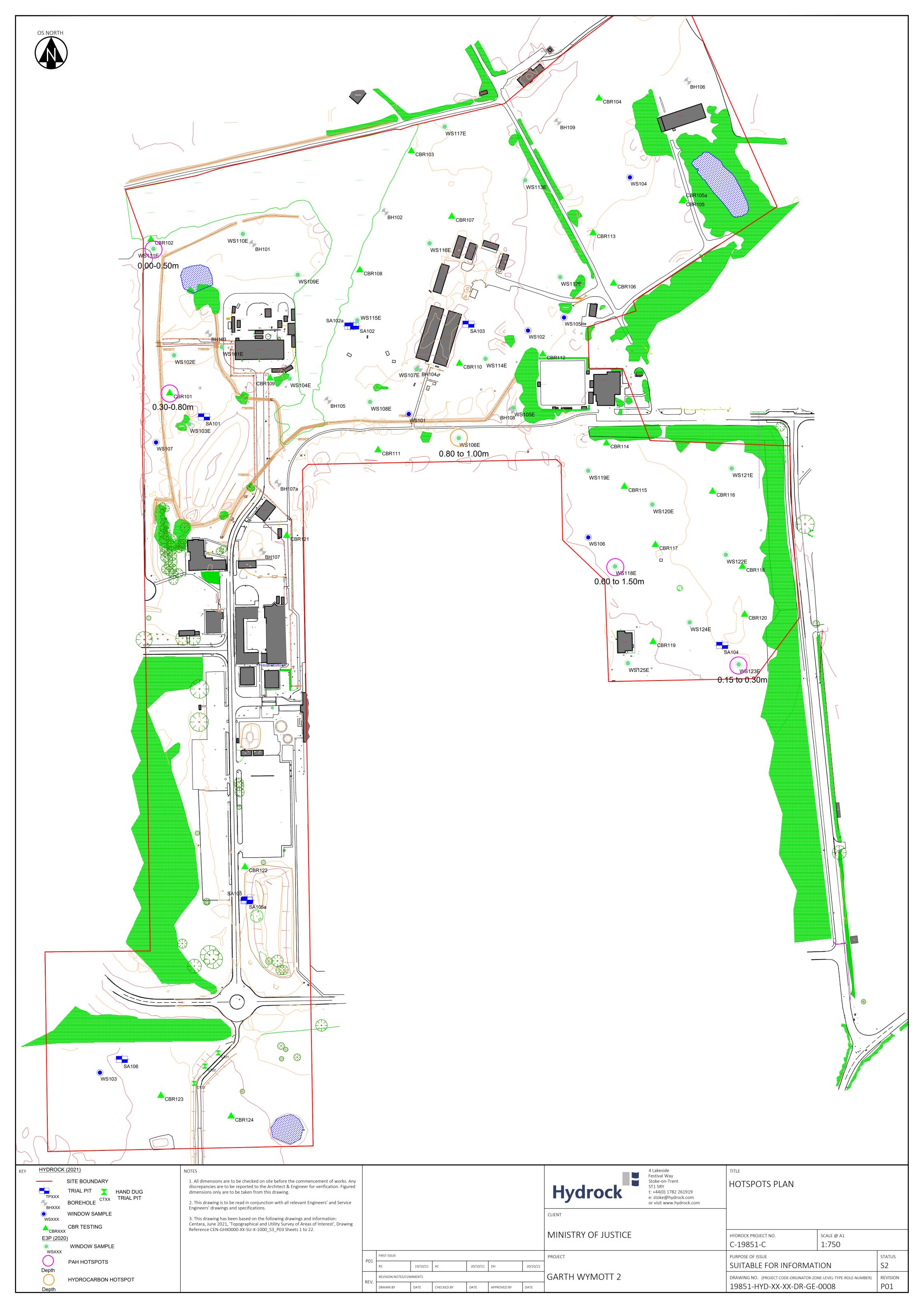

WFD-UKTAG. July 2014. UKTAG River and Lake Assessment Method, Specific Pollutants (Metals), Metal Bioavailability Assessment Tool (M-BAT). Water Framework Directive – United Kingdom Technical Advisory Group. Stirling.

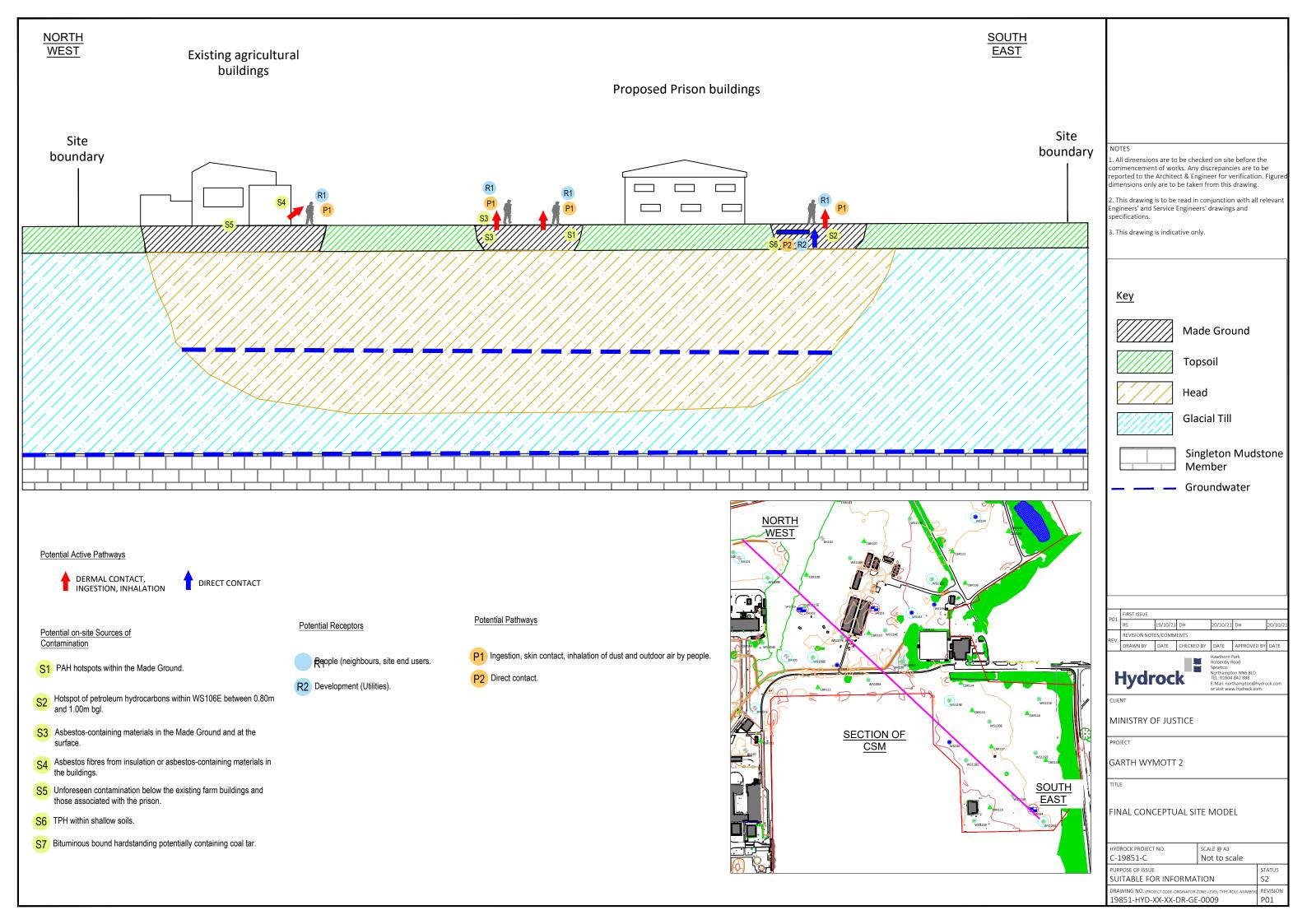

WILSON, S., OLIVER, S., MALLETT, H., HUTCHINGS, H. and CARD, G. 2007. Assessing risks posed by hazardous ground gases to buildings. CIRIA Report C665. Contaminated Land: Applications in Real Environments, London.

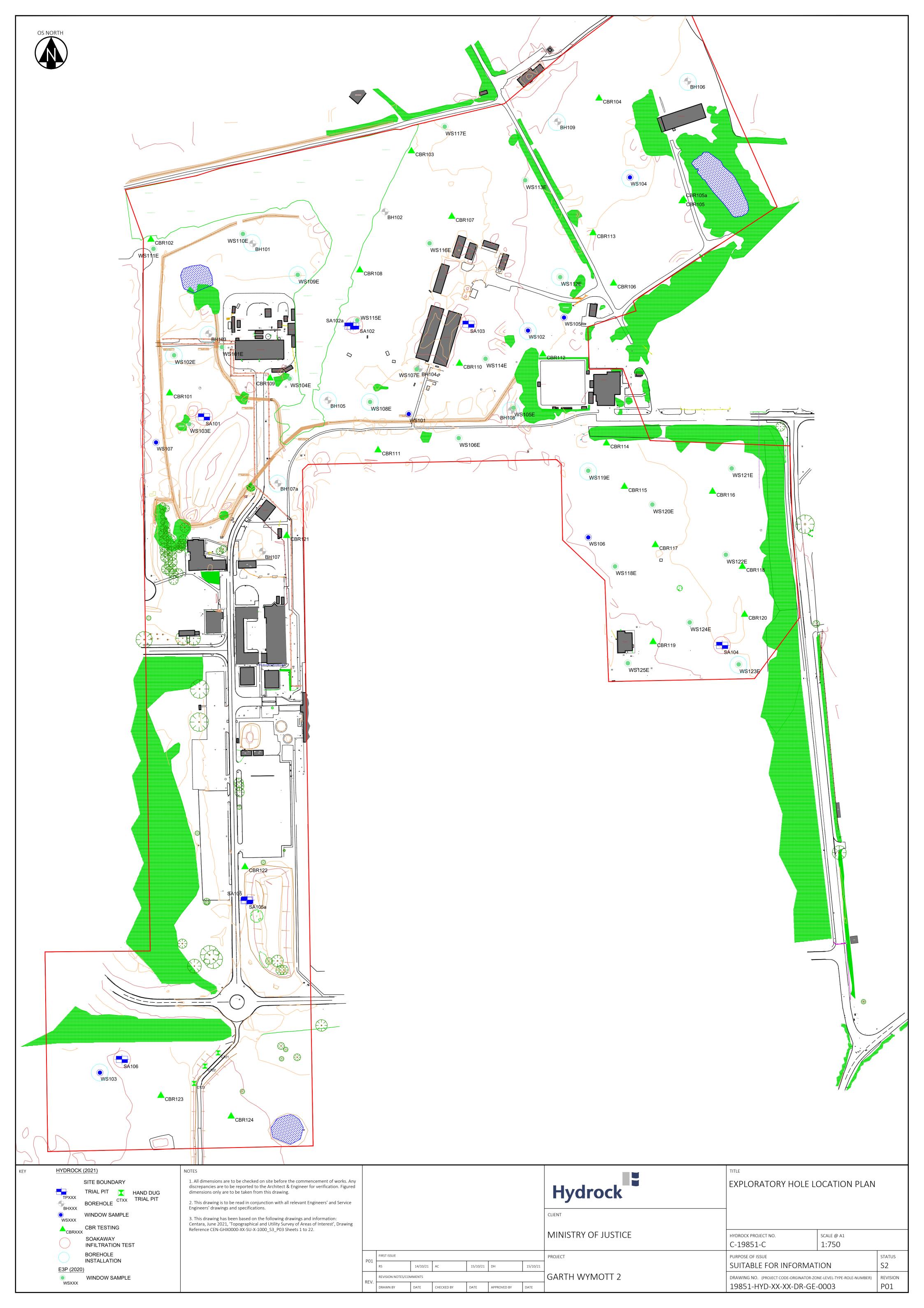

WILSON, S., COLLINS, F. and LAVERY, R., G. 30th July 2018. Using ternary plots for interpretation of ground gas monitoring results. Ground Gas Information Sheet No 1 Paper 1.0. Ambisense Limited and EPG Limited.




Appendix A Drawing







Appendix B Exploratory Hole Location Plan, Exploratory Hole Logs and Photographs

Exploratory Hole Location Plan

Hydrock Exploratory Hole Logs

								Р	roject:	Ga	rth W	/ymot	t 2				oreh				
Ну	di	n c	ck						-			-				E	3H	10	1		
ر	- GI													ı		Pag	ge No	o. 1	of 3		
Meth	od: C	able	Percus	ssion				Da	ate(s): 06	6/08/2	021 - (07/08/20)21	Logged By	: RC		Drilled	By:	DMW E	Orilli	ng
Clien	t: Min	istry o	of Just	ice				C	o-ords: 3	50353	3.53, 4	20895.5	53	Checked B	y: RS	F	Flush	ո:			
Hydro	ock P	roject	No: C	-19851	1			G	round Le	vel: 1	0.49m	OD					Scale	e: 1:	:50		
		San	nples / T	ests			Strikes				Stra	atum Desc	cription	1		£ -	Thickness (m)	- Q	Legend	rum-	entation / Backfill
Dept	h (m)	Т	Гуре	F	Results	>		Grass	over firm b	rown slig	ghtly sand	dy CLAY wi	th frequ	uent rootlets.		Depth 99.0	(0.05)	D C C C C C C C C C C C C C C C C C C C		Inst	- A
							\ 3	Stiff b				avelly CLA	Y. Grav	el is angular to s	subrounded	0.30	(0.25)	10.19			
							1/(MAD	coarse of b E GROUND grey angula))		ndatana an	d augr	tzito		/	(0.50)				
							/(MAD	E GROUND)				izite.		0.80		9.69			
1.	20	s	SPT		N=9			HEA		- 3 7		,				']	(1.00)				
	- 1.65 - 1.65		B D	(1,1	1,2,2,2,3)											-	(1.00)				
1.20	- 1.05		D					irm 1	o stiff reddis	h brown	seliahtly s	andy slight	tly aray	elly CLAY. Grave	al ie	1.80		8.69			
2.	00	S	SPT		N=16 3,3,4,4,5)		s		ngular to rou							2 -					
	- 2.45 - 2.45		B D		, , , , , ,		`		,								(1.20)				
																1					
3.	00	5	SPT		N=12				I.P. I. I.	P 1.0		P 1 0		N/ 0 1:		3.00		7.49			
	- 3.45		В	(1,2	2,2,3,4,3)		r	ound HEA	led fine to co	n slight	y sandy s mudstone	e and siltsto	one.	AY. Gravel is su	bangular to						
3.00	- 3.45		D				'	IILA	D)							1					
	00	5	SPT		N=15 2,3,4,4,4)											· -					
	- 4.45 - 4.45		B D																		
]					
5.	00	8	SPT		N=10											5-					
	- 5.45 - 5.45		B D	(2,2	2,2,2,3,3)											-					
5.00	- 5.45		D													1				ı	
																1					
															') - - -	(6.40)				-:-
6.50	- 6.95		U													1					-:-
	- 6.95		Ü	(1	9,90%)											1					-:·
																, :					:
																					- : - :
																1					: :
0	00		NDT.		N-44											-					- : :
	00 - 8.45		B B		N=11 3,2,2,3,4)										i	']					•
	- 8.45		D													1]: :
															,	, -					
																9.40		1.09			- :
	50	5	SPT	(1,1	N=4 I,1,1,0,2)			.oose HEA	e brown silty D)	fine and	d medium	SAND.					(0.40)		× ^ × ,		<u> </u>
	- 9.95 - 9.95		B D				5	Soft lo	ocally firm re	ddish b	rown silty	CLAY.			11	9.80		0.69	X:/ X		- ÷
		Р	rogres	s and	Observ	 √ation	⊢ s			(Chisell	ing		ral Remarks:			<u> </u>		20 !	4 O	\
Rig	Date	Time	Borehole	Casing	Casing	Water	Flu		Returns	From	То	Duration	Cable	nd dug inspec percussive dr	illing from 1.2	20m to	o 20.4	5m b	gl. 3) H	ole)
			υ υ ριπ (m)	Depth (m)	טואח.(mm)	реріп (m)	Тур	,e	(colour)	(m)	(m)	(HH:MM)	from 6	leted at target 6.00m to 20.00	depth and in Im bgl. 4) No	stalled visua	a with il or ol	respo Ifacto	onse zo ry evide	ne ence	of
													conta	mination.							
															L	ogged in	general	accorda	nce with BS	5930:2	2015

					F	Project	: Ga	rth W	/ymot	2			E	Boreh			
Hydr	ock					•			•					BH	10	1	
· · y a ·	OCI										T		Р	age N	o. 2	of 3	
	able Percu					Date(s): 0					Logged By: F					DMW [rilling
	istry of Jus					Co-ords: 3	35035	3.53, 4	20895.5	3	Checked By:	RS		Flus	h:		
Hydrock Pi	roject No: (C-19851				Fround Le	evel: 1	0.49m	OD				_	Scal		:50	
Double (m)	Samples /			Water-	Strikes			Stra	atum Desc	ription	1		pth	mbgl Thickness (m)	Level	Legend	Instrum- entation / Backfill
Depth (m)	Туре	R	tesults		Soft	locally firm r	eddish b	rown silty	CLAY.					¥ £ 5	, E	×_^_	l B ei
11.00 11.00 - 11.45 11.00 - 11.45 12.50 12.50 - 12.95 12.50 - 12.95	SPT B D SPT B D	(3,3,	N=16 ,4,4,3,5) N=4 ,1,0,1,2)		Loo (HE	se brown silt	y fine and	d medium	SAND.			1	111	(1.80	-1.1		
14.00 14.00 - 14.45 14.00 - 14.45	SPT B D		N=12 .2,3,3,4)		Soft (HE	locally firm r AD)	eddish b	rown silty	CLAY.			- 1	14 14	.00	-3.5		
15.50 15.50 - 15.95 15.50 - 15.95	SPT B D	(0.0	N=12 ,2,3,3,4)									1		(2.90		× × × × × × × × × × × × × × × × × × ×	
17.00 - 17.45 17.00 - 17.45 18.00 18.50 - 18.95 18.50 - 18.95	U U SPT B D	,	9,80%) N=19 ,4,4,5,6)		is a				e of mudstor	ne, silts	slightly gravelly CL/ stone and sandston		7	(3.55	6.4		
<u> </u>		ss and C						Chisell	ing	1) Hai	ral Remarks: nd dug inspectior						
Rig Date	Time Borehol Depth (n	e Casing n) Depth (m) I	Casing Diam.(mm)	Water Depth (m)	Flush Type	Returns (colour)	From (m)	To (m)	(HH:MM)	compl from 6	e percussive drillir leted at target de 3.00m to 20.00m mination.	pth and in bgl. 4) No	stall vis	led with	n resp olfacto	onse zo	ne ence of

							Р	roject	Ga	rth W	/ymot	t 2					reho			
Hydi	rock	<															3H1			
																-	e No			
Method: C							_	ate(s): 06					Logged E			_			DMW D	rilling
Client: Min							_	o-ords: 3				53	Checked	l By: F	RS	+	lush			
Hydrock P							G	round Le	vel: 1	0.49m	OD						cale		50	
Double (m)	1	es / Test) lé -	Nate V	Strikes				Stra	itum Desc	riptior	n			pth og l	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
Depth (m) 20.00	Type SPT	-	1	N=48			Stiff b	pecoming ve	ry stiff re	ddish bro	wn slightly	sandy	slightly grave	lly CLA	Y. Gravel .	ăĒ	₽.5	3 E		₹ 5 %
20.00 - 20.45 20.00 - 20.45	B D		(7,8,10	0,12,12,1	4)		(GLA	guiar to roun CIAL TILL)	aea tine				tstone and sar	nastone.	-	20.45		-9.96		
										End	of Borehole at	20.45m			- -					
															21 -					
															-					
															-					
															- 22 -					
															-					
															-					
															-					
															23 -					
															-					
															-					
															24 -					
															-					
															- - -					
															25 -					
															-					
															-					
															26 -					
															-					
															-					
															-					
															27 -					
															-					
															-					
															28 -					
															-					
															- -					
															29 -					
															-					
															-					
															30 -					
	Pro	gress a	and (Observ	/ation	s			(Chisell	ing		eral Remarks and dug insp			01124	Lleval	to 1 1	20m ha	1 2)
Rig Date	Timo Bo		Casing	Casing	Water	Flu	ush /pe	Returns (colour)	From (m)	To (m)	Duration	Cable	and dug insp e percussive bleted at targ	drilling	g from 1.20	m to	20.4	5m bo	gl. 3) H	ole
		, , = 0	/	. /				,	, ,		,	from (6.00m to 20 mination.	.00m b	gl. 4) No v	isual	or olf	factor	y evide	nce of
															Loo	iged in	general a	ccordan	ce with BS5	930-2015
															209	J - ""		Just	550	

								P	roject	: Ga	rth W	/ymot	t 2				reho			
Н١	/dı	n	ck						•			-				E	3H′	102	2	
														Т	1	T	je No			
			Percus					-	ate(s): 2					Logged By: F			rilled	Ву: [DMW D	rilling
			of Just						o-ords: 3				17	Checked By:	RS	_	lush			
Hydr	ock P			-19851	1			G	round Le	evel: 1	0.45m	OD				.	Scale	: 1:	50	
Don	th (m)		nples / T		Results	- Votor	Strikes				Stra	atum Desc	cription	1		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
Бер	ui (iii)	<u> </u>	туре		Results	+				ark brow	n slightly	sandy CLA	AY with	frequent rootlets.		0.05	(0.05)	10.40		ln: en /E
					-0.5			Firm	PSOIL) locally soft of ets. Gravel is	lark brov	vn slightly	sandy slig	htly gra	avelly CLAY with a o	ccasional	0.40	(0.35)	10.05		
Ü	.50		HSV	,	70kPa			\(MAE	DE GROUNI grey slightly	D) sandy s	lightly gra	evelly silty C	CLAY wi	rith occasional rootle	ets. Gravel	0.80	(0.40)	9.65		
								\(MAE	DE GROUND	D)				nologies including br	1/	4				
1	.20	8	SPT		N=10 1,2,2,2,4)			suba		ınded fin	e to coars	se of mudst		ly gravelly CLAY. Gr nd siltstone. Low col			(0.90)			
	.20 .20		B D		,			(HEA		Ü	•					1.70		8.75		
	00		D.T.		N-O			suba	ngular to rou					ntly gravelly CLAY. (ad siltstone.						
	.00		SPT B	(1,1	N=9 1,2,2,2,3)			(HEA	AD)						2	-				
	.00		D																	
3	.00	8	SPT		N=12 2,2,3,3,4)										3	-				
	.00 .00		B D		, , , ,															
4	.00	8	SPT		N=15										4	-				
	.00		B D	(2,3	3,3,3,4,5)															
4	.00		D																	
_	00		D.T.		N. 40															
	.00	*	SPT B		N=12 3,2,3,3,4)										5	-				
5	.00 - 5.50		D B				•													
							_													
															6		(8.60)			
6	.50		SPT		N=21															
	.50		В		3,4,5,5,7)															
6	.50		D												7					
7	.50		ES																	
8	.00		U	(2)	0,100%)										8					
	- 8.45		Ü	(2	0,10070)															
	.00 - 9.45		U U	(2	22,70%)										9					
															10	-				
		P			Observ	/atior					Chiselli		1) Hai	ral Remarks: nd dug inspectior						
Rig	Date	Time	Borehole Depth (m)		Casing Diam.(mm)	Water Depth (m		Flush Type	Returns (colour)	From (m)	To (m)	Duration (HH:MM)	compl	e percussive drillir leted at target de	oth. 4) Due	to sa	and bl	owing	back ι	
													backfi	g, drillers were ur illed with arisings	and bento					ctory
													evider	nce of contamina	uOH.					
															Lo	gged in	general a	accordan	ce with BS	5930:2015

								Project:	Ga	rth W	/ymot	t 2				reho			
Н۱	/di	'n	·k					,			-				Е	3H1	02	2	
' ')	, ai		-17												Pag	e No	. 2 c	of 3	
Meth	od: C	able	Percus	ssion				Date(s): 2	3/08/2	2021 - 2	25/08/20)21	Logged By: R	.C	D	rilled	Ву: [DMW D	rilling
Clien	nt: Min	istry o	of Justi	ice				Co-ords: 3	5046	6.84, 4	20923.1	17	Checked By:	RS	F	lush	:		
Hydr	ock P	roject	No: C	-19851	1			Ground Le	evel: 1	0.45m	OD				s	cale	: 1:	50	
		San	nples / T	ests		Ť.	Strikes			Stra	atum Desc	ription			£ _	Thickness (m)	<u></u>	pue	-tion Kfill
Dep	th (m)	1	Гуре		Results			m becomina st	iff reddis				ntly gravelly CLAY. G	ravel is	Dep	m (m)	Level m OD	Legend	Instrum- entation / Backfill
							su (H	bangular to roບ EAD)	ınded fin	e to coars	se of mudst	tone an	nd siltstone.		10.30		0.15		
								ry loose reddis EAD)	h brown	fine and	medium SA	AND wit	th pockets of soft sai	ndy CLAY.					
11	1.00		SPT		N=1									11 -					
	1.00		В	(1,1	1,0,0,0,1)											(1.60)			
11	1.00		D																
															11.90		-1.45		
								m locally soft r EAD)	eddish b	rown silty	CLAY.			12 -				×	
12	2.50		SPT		N=13									-				<u>×</u> _×	
12	2.50		В		2,3,3,3,4)													<u>×</u>	
12	2.50		D											13 -				××	
														-		(2.60)		× ×	
																		×_×_	
14	1.00	,	SPT		N=12									- - 14 -				<u>×</u> _×	
14	1.00		В		2,2,3,3,4)													<u>×_×</u> _	
14	1.00		D					ddish brown si	Ity fine a	and mediu	ım SAND.				14.50		-4.05	<u>×</u>	
								EAD) m becoming st	:66 v = -1 11	.b. b	ailth OL AX			-	14.90	(0.40)	-4.45		
								m becoming st EAD)	iii reaais	sn brown s	SIITY CLAY.			15 -				<u>×</u> _×	
15	5.50	5	SPT		N=15									- - -				<u>×_^</u> _	
	5.50		В	(2,2	2,3,3,4,5)													×	
15	5.50		D											16 -				<u>×</u> _ <u>×</u>	
														· •		(3.00)		<u>×_×</u> _	
																		× ×	
17	7.00	5	SPT		N=15									17 -				×_×_	
	7.00		В	(2,3	3,3,4,4,4)													<u>×</u> _ <u>×</u> _	
17	7.00		D															<u>×_×</u> _	
							Q+i	ff becoming ve	rv stiff re	eddish bro	own slightly	sandy	slightly gravelly CLA	Y Gravel	17.90		-7.45	×	
							is	angular to roun LACIAL TILL)						Jiavoi 18 -					
18	3.50	8	SPT		N=28			,											
	3.50 3.50		B D	(4,5	5,6,7,7,8)														
16			J											19 -		(2.50)			
																/			
_														20 -					
		Р	rogres	s and	Observ	/ation	s		(Chiselli	ing		ral Remarks: nd dug inspection	from grour	nd lev	el to	1.20r	n bgl. :	2)
Rig	Date	Time	Borehole Depth (m)		Casing Diam.(mm)	Water Depth (m)	Flush Type		From (m)	To (m)	Duration (HH:MM)	Cable compl	percussive drillin leted at target dep	g from 1.20 oth. 4) Due)m to to sa	20.40 and blo	Om bo owing	gl. 3) H ı back ı	ole
												casino backfi	g, drillers were un illed with arisings	able to inst and benton	all th	e bore	ehole	s and	
												evide	nce of contaminat	ion.					•
														Log	ged in s	general a	ccordan	ce with BS	5930:2015

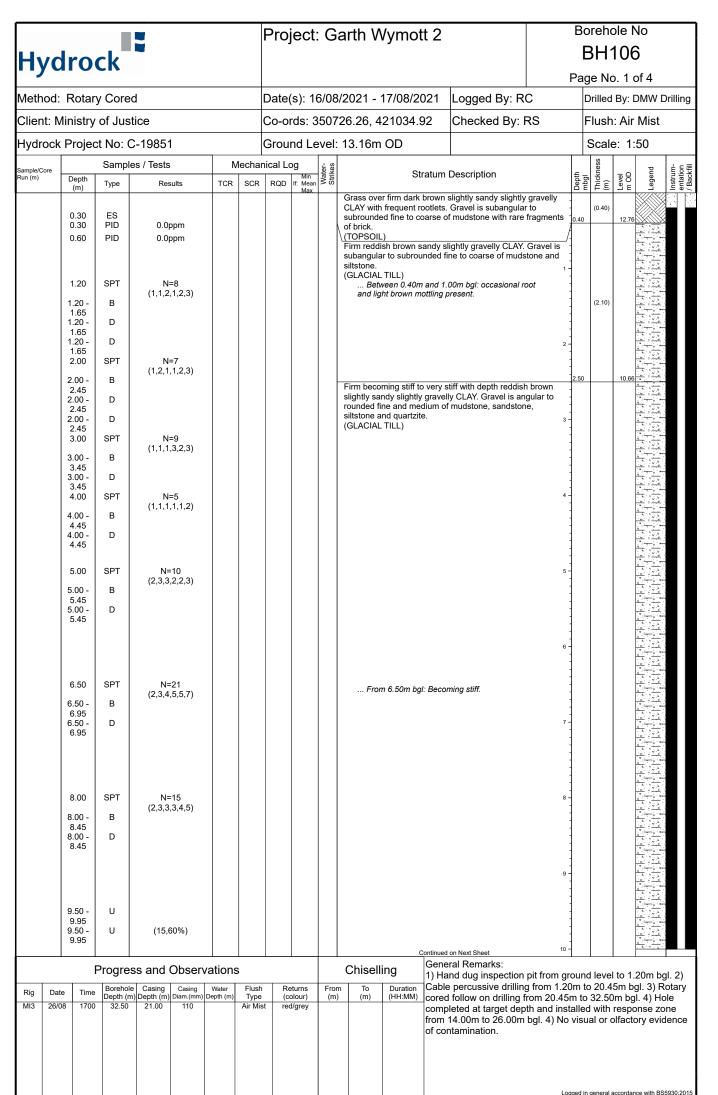
								Р	roject	: Ga	rth W	/vmot	t 2				Во	reho	ole N	10	
Ц	,d.		ا 🔳					ľ	,			· , · · · · ·	-				Е	3H	102	<u> </u>	
П	/dr	U	.K													F			o. 3 d		
Meth	od: C	able	Percus	ssion				D	ate(s): 2	3/08/2	2021 - 2	25/08/20)21	Logged By:	RC					DMW D	rilling
Clier	ıt: Min	istry (of Just	ice				C	o-ords: 3	350466	6.84, 4	20923.1		Checked By			F	lush	:		
				-19851	<u> </u>			_	round Le					_			S	Scale	: 1:	50	
-,			nples / T				S														≡
Dep	th (m)	1	уре		Results	- oteW	Strikes				Stra	itum Desc	cription	ı			Depth nbgl	Pickne m)	Level m OD	Legend	Instrum- entation / Backfill
20	0.00	5	SPT		/230mm 11,11,12,1	16)								slightly gravelly C and siltstone.	LAY. Gr	avel .					
	0.00		B D	(0,10,1	11,11,12,				CIAL TILL)			of Borehole at					20.40		-9.95		
																-					
																21 -					
																-					
																-					
																1					
																22 -					
																-					
]					
																1					
																23 -					
																-					
]					
																24 -					
																1					
																-					
																-					
																25 -					
																-					
																-					
																-					
																26 -					
																-					
																1					
																27 -					
																-					
																-					
]					
																28 -					
																-					
																-					
																29 -					
																-					
																-					
																30 -					
		P	rogres	s and	Observ	/ation	s			(Chisell	ing		eral Remarks:	on fr-		- L		1 20	n hal	2/
Rig	Date	Time	Borehole	Casing	Casing	Water	FI	ush	Returns	From	То	Duration	Cable	and dug inspection percussive drill	ling fro	m 1.20	m to	20.4	0m bo	gl. 3) H	ole
			реріп (m)	Depth (m)	iam.(mm)	Debtu (m	1)	ype	(colour)	(m)	(m)	(HH:MM)	casing	leted at target d g, drillers were ι	unable	to insta	all th	e bor	ehole	s and	
														filled with arising nce of contamin		penton	ite. 5	o) No	visua	or olfa	actory
																Log	ged in	general a	accordan	ce with BS	5930:2015

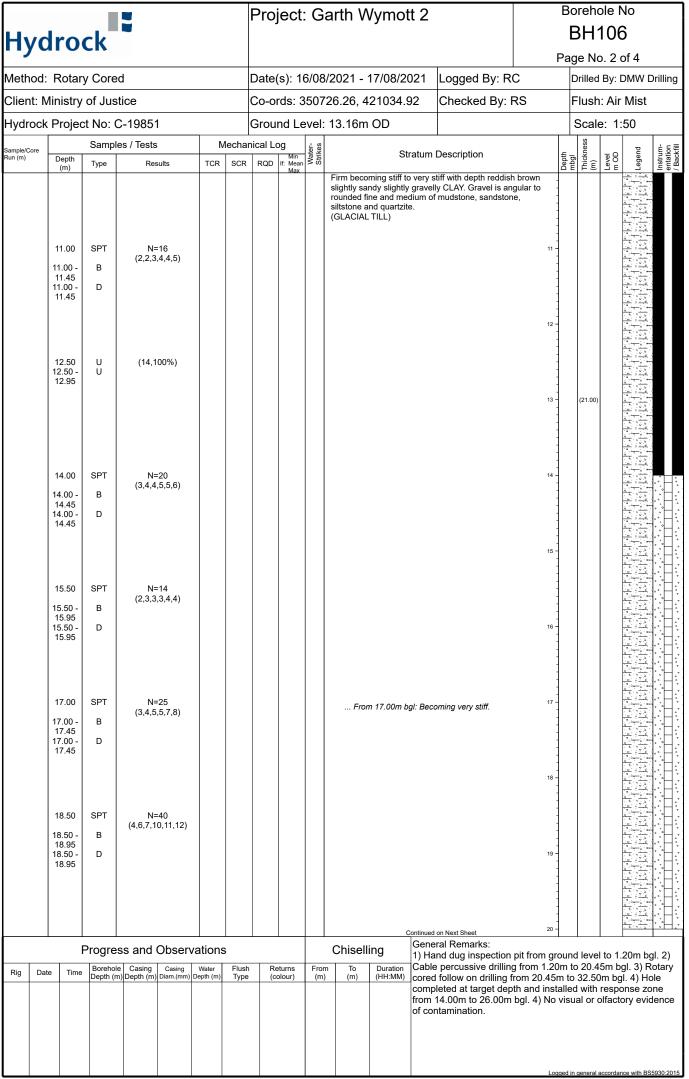
								Project	: Ga	rth W	/ymot	t 2					reho			
Н۱	di	00	k													В	3H	103	3	
															F	⊃ag	e No	o. 1 d	of 3	
Meth	od: C	able l	Percus	ssion			I	Date(s): 0	2/09/2	.021			Logged By	: RC		D	rilled	Ву: [DMW E	Orilling
Clien	t: Min	istry o	of Just	ice			(Co-ords: 3	35031	5.52, 4	20818.7	'2	Checked E	By: RS		F	lush	:		
Hydro	ock P	roject	No: C	-1985 ²	1		(Ground Le	evel: 1	0.98m	OD						cale	: 1:	50	
		San	nples / T	ests		ater-	Strikes			Stra	atum Desc	ription				ŧ-	Thickness (m)	= <u>□</u>	end	Instrum- entation / Backfill
Dept	h (m)	Т	уре		Results	×		ss over firm o	lark brow			•	frequent rootlets	s.		Depth ombgl	(m) (m)	Level m OD 10.88	Legend	Insti enta / Ba
							(TC Firr ver	PSOIL)	own sligh ubangula	ntly sandy	gravelly Cl	LAY with	h occasional ro		el is	0.65	(0.55)	10.33		
0.	80		ES					t grey slightly NDE GROUNI		CLAY. Gr	avel is fine	to coars	se of brick.		1-		(0.45)			
1.	20	S	SPT		N=10 2,2,2,3,3)			n yellowish br	own sligl	htly sandy	/ CLAY.				' -	1.10		9.88		
1.	20 20		B B	(1,2	2,2,2,3,3)		,	,							-					
	20 00		D SPT		N=13										2 -		(1.20)			
	00		В		N=13 2,2,3,4,4)										d	2.30		8.68		
	00		D				Gra						sandy slightly g one and siltston					3.00		
3.	00	S	SPT		N=11 2,2,3,2,4)										3 -					
	00 00		B D	(1,2	<u>-,-,</u> 0, <u>-,</u> 4)										-					
4.	00	s	SPT		N=13										4 -					
	00 00		B D	(2,2	2,3,3,3,4)										-					
	-														-					
5.	00	S	SPT		N=13										5 -					
	00		B D	(1,2	2,2,3,4,4)										-					
5.	00		ט												-		(6.40)			
															6 -					
e	50		SPT		N=21										-					
6.	50		В		N=21 3,4,5,5,7)]					
6.	50		D												7 -					
															-					
	00		U	(2	1,100%)										8 -					
8.00	- 8.45		U												-					
															-	8.70		2.28		
							fine	and medium			ravelly CLA	AY. Grav	el is subangula	r to rounded	l, .	5.70	(0.50)			
								(AD) se reddish br	own eiltu	fine and	medium 97	AND			9 -	9.20		1.78	× × ×	
9.	50	S	SPT		N=9			(AD)	errii Siity	o and	caiaiii OF	,			-		(0.50)		× × × × ×	
	50 50		B D	(1,	1,2,3,2,2)			t reddish brow	vn silty C	LAY.						9.70		1.28	×_×_	
	-				Ok -			,		Ob:- "		Gener	ral Remarks:		10 -					r.H.
<u>.</u> T	<u> </u>		rogres		Observ	vation _{Water}	S Flush	Returns	From	Chiselli	Duration	1) Har	nd dug inspect percussive d							
Rig	Date	Time			Diam.(mm)		Type	(colour)	(m)	(m)	(HH:MM)	comple from 5	eted at target 5.00m to 20.00	depth and	insta	alled	with	respo	nse zo	ne
													mination.	<i>,</i>						
								1							Log	ged in g	general a	accordan	ce with BS	5930:2015

							Project	: Ga	rth V	/ymot	t 2						ole N		
Hyd	ro	ck^{-}												_			103		
Method:			eeion				Date(s): 0	2/00/2)))))			Logged By: F	RC	-			By: F	of 3 DMW D	rilling
Client: M							Co-ords: 3			20818 7	"2	Checked By:			_	lush		JIVIVV L	'illing
Hydrock				1			Ground Le					Officered By.	. 110		+		: 1:	50	
Tydrook		imples / T		•	<u> </u>	-	Oround Ed	7 01. 1						Т					⊢ ⊏
Depth (m)		Туре		Results	Water-					tum Desc	ription	1		:	Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
							ft reddish brov EAD)	vn silty C	CLAY.					-				<u>×_^</u> _	
														-		(1.50)	-	×— <u> </u>	
																		<u> </u>	
11.00		SPT	(1,	N=9 1,2,2,2,3)										11 -	11.20		-0.22	××	
11.00 11.00		B D					ose reddish br EAD)	own silty	fine and	medium SA	AND.						-	× × × ×	
																		x × × × ×	
														12 -		(1.60)		× ^ × × × ×	
																		× × ×	
12.50		SPT	(2,2	N=9 2,2,3,2,2)														× × × × ×	
12.50 12.50 12.50 - 13.0	20	B D B					eddish brown s EAD)	ilty fine a	and mediu	ım SAND.				13 -	12.80		-1.82	× ×	
12.50 - 15.0		Б																× × × × × ×	
																		× × × × ×	
																(2.20)		× ×	
14.00		U	(16,0%)										14 -		(=:==)		x	
																		× × × × × ×	
																	-	. X . X . X . X . X	
						Me	edium dense re	eddish br	rown silty	fine and me	edium S	SAND.		15 1	15.00		-4.02	× × × ×	
						(H	EAD)											x	
15.50		SPT		N=12 2,2,3,3,4)														× × ×	
15.50 15.50		B D												16 -			-	× × × × ×	
														1				« × × × ×	
														1				× ^ × × × ×	
														1		(3.40)		× × ×	
17.00 17.00		SPT		N=16 3,3,4,4,5)										17 -				× × × × ×	
17.00		B D												1				« × × × ×	
														1			-	× × × × × ×	
														18 -				× × × × ×	
						C+i	ff haceming ve	ert atiff va	ddiab bro	um olimbthu	a a m du s	aliabthy arayally Cl	AV Crovel		18.40		-7.42	× × ×	
18.50 18.50		SPT B		N=33 5,7,7,9,10)		is						slightly gravelly CL e, siltstone and sand		1			-		
18.50		D					,							19 -			-		
														1			-		
19.50 - 20.0	00	В												1		(2.05)	-		
														-			-		
		Progres	s and	Ohsen	/ation				Chisell			ral Remarks:		20 -		l			
Rig Date		Borehole	Casing	Casing	Water	Flush		From	То	Duration	Cable	nd dug inspection percussive drilli	ing from 1.	20r	m to	20.4	5m bo	I. 3) H	ole
Julia		Depth (m)	Depth (m)	Diam.(mm)	Depth (m)	Туре	(colour)	(m)	(m)		from 5	leted at target de 5.00m to 20.00m	epth and ir bgl. 4) No	sta vis	illed sual	with or olf	respo actor	nse zo y evide	ne nce of
											conta	mination.							
														Logg	ed in g	eneral a	ccordan	e with BS	5930:2015

								Р	roject	: Ga	rth V	/ymot	t 2					oreh			
Н١	/dr	00	ck														I	3H	103	3	
								1											o. 3 d		
			Percus					+	ate(s): 0					Logged B						DMW E	rilling
			of Just					-	o-ords: 3				72	Checked	By: F	RS		Flush			
Hydr	ock P			-19851	1		1	Gı	round Le	evel: 1	0.98m	OD							e: 1:	50	
	4l- / `	1	nples / T			Vater-	Strikes				Stra	atum Desc	cription	1			th of	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
	oth (m) 0.00		Type SPT	50.	Results /295mm			Stiff b	ecoming ve	rt stiff re	ddish bro	wn slightly	sandy s	slightly gravell	y CLAY.	. Gravel	- Pe	ĮĒĒ	n Ce	ě	e re
20	0.00		D	(6,13	,19,26,5,0	J)			angular to r	ounded,				, siltstone and	sandst	one.	20.4	5	-9.47		
											End	of Borehole a	t 20.45m				1				
																2	21 -				
																	1				
																	1				
																2	2 -				
																	}				
																2	13 -				
																	}				
																	}				
																2	24 -				
																	}				
																2	25 -				
																	1				
																2	16 -				
																	1				
																2	27 -				
																2	18				
																	1				
																2	19 -				
																	-				
													0	I D '		3	10 -				
		Р		s and							Chisell		1) Hai	ral Remarks nd dug inspe percussive	ection p	oit from	groun	d leve	el to 1.	20m bg	gl. 2)
Rig	Date	Time	Borehole Depth (m)	Casing Depth (m)	Casing Diam.(mm)	Water Depth (m)	Flu Typ		Returns (colour)	From (m)	To (m)	Duration (HH:MM)	compl from 5	percussive leted at targe 5.00m to 20. mination.	et dept	h and in	stalle	d with	respo	nse zo	ne
																	Lorged !	n general	annords.	ice with BS	5030-2045
			1														Logyeu I	. yeneral	accordidit	oo wiiil DO	C1 U2.VUU

						Project:	Ga	rth W	/ymot	t 2			Во	reho	ole I	Vo	
Hydı	rock					,								3H			
						-					l	1	Ť	e No			
Method: C						Date(s): 20					Logged By: R					DMW D	rilling
Client: Min						Co-ords: 3				9	Checked By:	RS	_	lush			
Hydrock P						Ground Le	evel: 1	0.91m	OD				_ S	Scale	: 1:	:50	
Depth (m)	Samples		Results	Water-	Strikes			Stra	atum Desc	cription	ı		Depth nbgl	Thickness (m)	n OD	puege-	nstrum- entation Backfill
0.50 0.50 0.50 0.50 0.80 0.80 1.20 1.20 1.20 2.00 2.00 2.00 3.00 3.00 3.00 3.00 4.00 4.00 4.00 5.00 5.00 5.00 6.50 6.50 6.50 6.50 8.00 8.00 8.00 8.00 8.00	1	(1,2) (1,2) (1,2) (2,2) (2,3)	Results 63kPa N=15 ,3,3,4,5) N=16 2,3,4,4,5) N=16 3,3,4,4,5) N=10 ,2,2,3,3,2) N=20 6,4,4,5,7) N=18 ,3,4,5,6)	Water Water	Gr row va (Tr Gr su (M Fir an (M Fir CL	otlets and occa rious lithologies OPSOIL) eyish brown as brounded fine I IADE GROUNE m brownish gram brownish gram gular fine to co IADE GROUNE for gravel is s d d siltstone. EAD)	sional ross. shy very to coarse o) ey slightlarse of b o) iff with d ubangul	orn slightly pots. Grav gravelly f e of varior ly gravelly prick. Cob epth brov ar to rour	r sandy sligi rel is suban ine to coars us lithologie r CLAY with obles are ar wn mottled and	htly gra gular to se SAN es includ n low co ngular o grey slig nd medi	velly CLAY with freq orounded fine to coa D. Gravel is angular ding brick and clinke	r to er. el is 1	1.10 10.00	(a) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	9.81 9.81	pueben Total Control C	Instrum- entation Backfill
	Progr	ess and (Ohsen	/ation	 s		(Chisell	ina		ral Remarks:						
Rig Date	Time Boreh	ess and (Casing	Water	Flush Type		From (m)	To (m)	Duration	1) Hai Cable compl bento	nd dug inspection percussive drillin leted at target de nite on completion mination.	g from 1.2 oth and ba n. 4) No v	0m to ckfille isual	20.4 d with or olfa	5m b n aris actory	gl. 3) H ings an	ole d ice of

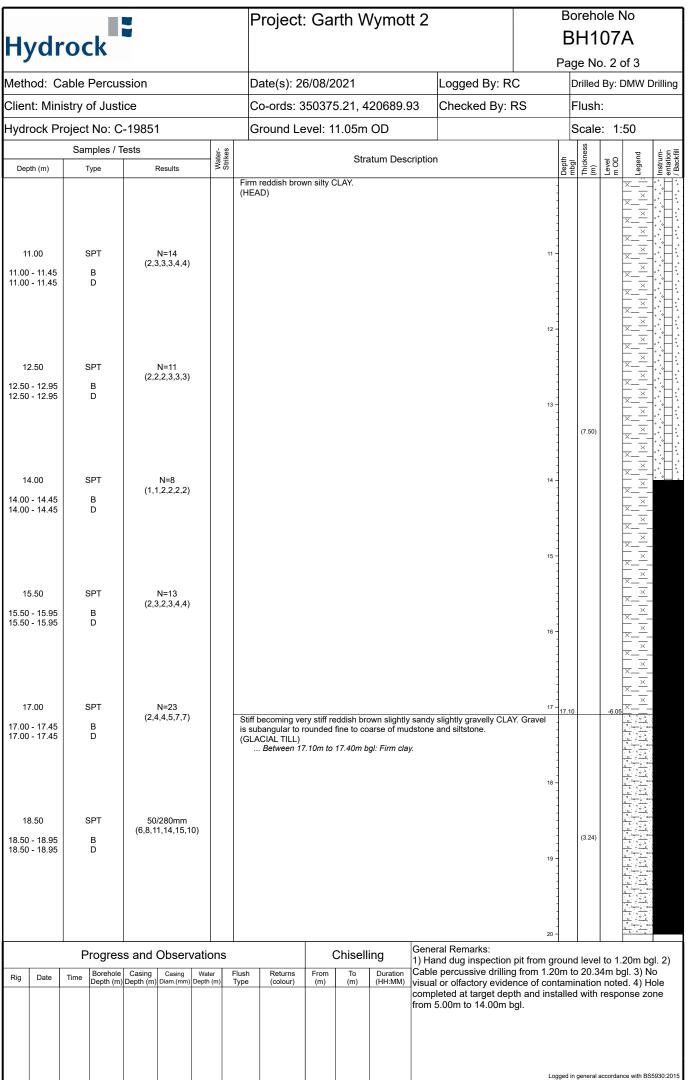

								Pro	ject	: Ga	rth V	/ymot	t 2				E	3ore				
Н۱	/dr	oc	:k ⁼															BH	11	04	-	
																	Р	age	No	. 2 c	of 3	
Meth	od: C	able I	Percus	ssion				1	• •			23/08/20		Logged F	3y: R0	C		Drill	ed	Ву: С	MW E	rilling
Clier	ıt: Min	istry c	of Justi	ice				Co-c	ords: 3	35049	5.94, 4	20788.5	59	Checked	l By: F	RS		Flu	sh:			
Hydr	ock Pr	roject	No: C	-1985	1			Grou	und Le	evel: 1	0.91m	OD								: 1:	50	
			nples / T			/ater-	Strikes				Stra	atum Desc	cription	า			£	mbgl		D C	Legend	Instrum- entation / Backfill
Dep	oth (m)	T	ype		Results	>		oose re	ddish br	own grav	elly fine	to coarse S	SAND. C	Gravel is suba	angular f	ine of	- 2	로 물	<u>E</u>	Level m OD	Ĕ	Ins.
							(HEAD)		udstone							10	0.40	10)	0.51		
								irm bec HEAD)	oming s	tiff reddis	sh brown	silty CLAY.								-	×_×_	
11	1.00	S	PT		N=9											1	1				×	
	1.00		В	(1,:	2,2,2,2,3)												1			-	×	
11	1.00		D																		<u> </u>	
																					××	
																1	2 -				<u>×_^</u> _	
11	2.50	9	PT		N=12															-	×	
	2.50		В		3,2,3,3,4)												1				<u>×</u> _×	
12	2.50		D													1	3 -				××	
																	}				<u>×_^</u> _	
																				-	×	
1	1.00		PT		N=10											1	,]	(7.2	20)	-	<u>×</u>	
	4.00		В		2,2,2,3,3)											'	"]	(7.2	20)		××	
	1.00		D														-				<u>×_^</u> _	
																	1			-	×— ×_×	
																1	5 -				<u> </u>	
																	1				×_×	
	5.50 - 15.95		U U	(1	1,100%)												1			-	<u>×_^</u> _	
																1	6 -				×	
																	1			-	<u>×_×</u>	
																	1				×_×	
																	1			-	<u>×_^</u> _	
	7.00 7.00		PT B	(2,	N=13 2,3,3,4,3)											1	7 -				×— ×_×	
17	7.00 7.00		D ES														17	7.60		-6.69	<u> </u>	
							r	ounded	fine and	brown s medium	ightly sar	ndy slightly tone and si	gravell Itstone.	y CLAY. Grav	el is ang	gular to	-			0.00		
							(GLACIA	L TILL)							1	8 -					
																	1			-		
	3.50 - 18.95		U U	(3	1,100%)												1			-		
																1	9 -	(2.8	35)			
																			,	-		
																				-		
			ro c = -	0.67-1	Ob = -:	/oti = :					^h:"	ina	Gene	ral Remarks	s:	2	0 -				. <u> </u>	Y//3X//
D:-	D-#:	Time	Borehole		Obser	/ation	S Flus	h F	Returns	From	Chisell	Duration	1) Ha Cable	ind dug insp e percussive	ection drilling	from 1.	20m	1 to 20).45	īm bo	Jl. 3) H	ole
Rig	Date	Time		Depth (m)	Diam.(mm)		Тур		colour)	(m)	(m)	(HH:MM)	comp	leted at targ	et dept	th and ba	ackf	illed v	vith	arisii	ngs an	d
														mination.		•				,		
																ı	ogge	d in gene	ral a	ccordan	e with BS	5930:2015


								Project	: Ga	rth W	/ymot	t 2			Во	reho	ole N	10	
Ц	,d.		اسا-					,			,				Е	3H	104	ļ	
	/dı	U	.N												Pag	e No	o. 3 c	of 3	
Meth	od: C	able	Percus	ssion				Date(s): 2	0/08/2	2021 - 2	23/08/20	021	Logged By: R	1				DMW D	rilling
Clier	nt: Min	istry o	of Just	ice				Co-ords: 3					Checked By: F		F	lush	:		
				-19851	<u> </u>			Ground Le	evel: 1	0.91m	OD				S	Scale	: 1:	50	
-,			nples / T			٤													ا جد≡
Dep	oth (m)		уре		Results	Wate	Strikes			Stra	atum Desc	cription	1		Depth nbgl	Pickne m)	Level m OD	Legend	Instrum- entation / Backfill
20	0.00	5	SPT		/285mm 1,15,15,9	2)	Ve	ry stiff reddish Inded fine and	brown s	lightly sar	ndy slightly	gravelly	y CLAY. Gravel is an	gular to .					
	0.00		B D	(7,0,1	11, 10, 10,	,		LACIAL TILL)					I recovered in base or	f SPT	20.45		-9.54		
							\ 	shoe.			of Borehole at			/-					
														- - 21 -					
														-					
														-					
														-					
														22 -					
														-					
														-					
														-					
														23 -					
														-					
														-					
														- - 24 -					
														-					
														- - -					
														25 -					
														-					
														- -					
														-					
														26 -					
														- -					
														-					
														-					
														27 -					
														-					
														-					
														28 -					
														-					
														-					
														- -					
														29 -					
														-					
														- -					
														-					
		<u> </u>		_						<u> </u>		Gene	ral Remarks:	30 -					
	-			s and				B.:		Chisell		1) Ha	nd dug inspection percussive drilling						
Rig	Date	Time	Borehole Depth (m)	Casing Depth (m)	Casing Diam.(mm)	Water Depth (m)	Flush Type	Returns (colour)	From (m)	To (m)	Duration (HH:MM)	comp	leted at target dep	th and bac	kfille	d with	n arisi	ngs an	d
													nite on completion mination.	i. 4) INO VIS	oual (UI OITA	actory	evider	ice of
														100	ned i	general	accord	ce with BS	5030-2045
			1	1	1	1	1	1	1	1	1	1		Log	gou III	acueigi g	udfl	OF MILLI DO	CI V2.000

							Project: Garth Wymott 2								Borehole No								
Hydrock									-			-				BH105							
٠٠,	WI.		-17											1			Pag	ge No	o. 1 c	of 3			
Meth	od: C	able l	Percus	ssion				D	ate(s): 1	8/08/2	021 - 1	19/08/20)21	Logged	By: R	С	[Orilled	Ву: [DMW D	rilling		
Clien	t: Min	istry o	of Justi	ice	_		_	С	o-ords: 3	350418	3.01, 4	20761.6	60	Checke	d By: F	RS	F	lush	:				
Hydro	ock P	roject	No: C	-19851	1			G	round Le	evel: 1	0.42m	OD						Scale	: 1:	50			
		San	nples / T	ests			Strikes				Stra	atum Desc	cription	— <u>—</u>			- €	Thickness (m)	<u>e</u> □	pue	Instrum- entation / Backfill		
	h (m)		ype ES	'	Results	1	\$ ts	Grass	s over firm d	ark hrow				velly CLAY	with frequ	uent	Depth		Level m OD	Legend	Insti enta / Ba		
0.	10	F	PID	C	0.0ppm			rootle	ets. Gravel is one with occ	subang	ular to su	brounded f	ine to c	coarse of mu	dstone a	ind	0.30	(0.30)	10.12				
0.	40		D				\	(TOP	SOIL)		Ū		occasio	nal rootlets.			0.65	(0.35)	9.77				
	80 80		B PID).0ppm			Light		SAND ar				ingular to ro	unded fin	ie to	0.90	(0.25)	9.52				
	20		SPT		N=14		1	(HEA						ite. .AY. Gravel i	e eubanc	ular to	1/]						
	- 1.65		В		2,3,3,4,4)				ded fine and				reny UL	.AI. GIAVEII	s subang	julai IU	}						
1.20	- 1.65 - 1.65		D D					\. IL/	-,									(1.60)					
2.	00	s	SPT		N=9											:	2 -						
2.00	- 2.45		В	(1,1	1,2,2,2,3)												1						
2.00	- 2.45		D				-	Firm	locally soft r	eddish b	rown CL.A	AY.					2.50		7.92	<u> </u>			
								(HEA			02												
	- 3.45 - 3.45		U U	(1	7,100%)																.: <u>∃</u> ::		
0.00	0.10			(.,,																		
																	}						
4	00		SPT		N=12												4	(3.00)					
	- 4.45		В		2,2,3,3,4)											•	*]	(3.00)					
	- 4.45 - 4.45		D														1						
							•										1						
5.	00	s	SPT		N=15											:	5 -						
	- 5.45		B D	(2,3	3,3,3,4,5)																		
5.00	- 5.45		U				+						elly CL	AY. Gravel i	s subang	jular to	5.50		4.92				
								round (HEA	ded fine and .D)	medium	ot mudst	tone.					1						
																(6 -						
6 50	6.05																1						
	- 6.95 - 6.95		U U	(2	21,90%)												1						
																;	7 -						
																	1	(3.50)					
																	1						
																	-						
8.	00	S	PT		N=11 2,2,2,4,3)											ŧ	8 -						
	- 8.45 - 8.45		B D	(1,2	,_,_, ,,,,,												1						
a no	- 9.95		В														9.00		1.42				
9.00	- ७.५၁		ט					Firm becoming stiff silty CLAY. (HEAD)												×			
9.	50	S	SPT		N=12												1			<u>×_*</u> _			
	- 9.95		D		2,2,3,3,4)												1			<u>×_ ×</u>			
																10	0 -			×	·:\:		
		Р	rogres	s and	Observ	vatior	าร				Chiselli	ing		ral Remark		pit from o	om ground level to 1.20m bgl. 2)						
Rig	Date	Time	Borehole Depth (m)		Casing Diam.(mm)	Water Depth (m		lush	Returns (colour)	From (m)	To (m)	Duration (HH:MM)	Cable	e percussiv	e drilling	g from 1.2	20m to	to 20.40m bgl. 3) Hole d with response zone					
			. ()	. ()	. ,				`,	,		,	from 3	3.00m to 2 mination.	0.00m b	gl. 4) No	visua	l or ol	factor	y evide	nce of		
													Conta	mmauUH.									
										1						L	.ogged in	general a	accordan	ce with BS5	5930:2015		

								Р	roject	: Ga	rth V	/ymot		Borehole No							
Ну	dr	OC	·k														E	3H	105)	
• • • •																	Pag	e No). 2 c	of 3	
Method	d: C	able	Percus	ssion				D	ate(s): 1	8/08/2	2021 -	19/08/20)21	Logged By:	RC			rilled	Ву: С	MW D	rilling
Client:	Mini	istry o	of Justi	ice				С	o-ords: 3	35041	8.01, 4	20761.6	0	Checked By	y: RS		F	lush	:		
Hydroc	k Pr	oject	No: C	-19851	1			G	round Le	evel: 1	0.42m	OD						cale	: 1:	50	
			nples / T			ater-	Strikes				Stra	atum Desc	cription	n			를 를	Thickness (m)	- Q	Legend	Instrum- entation / Backfill
Depth ((m)	Т	уре		Results	>	S		becoming s	tiff silty C	CLAY.						를 를	ĒĒ	Level m OD	<u> </u>	ent - Hr.
11.00 - 1 11.00 - 1 11.00 - 1 12.50 - 1 12.50 - 1	11.45 11.45 0		PPT B D PPT B D	(2,3	N=15 3,2,4,4,5) N=13 3,3,3,3,4)			(HEA	(D)							11 -		(6.50)			
14.00 - 1 14.00 - 1	14.45 14.45		B D	(2,2	N=17 2,4,4,4,5)											14 -	15.50		-5.08	x	
15.50 - 1 15.50 - 1	15.95		B D		N=22 3,4,5,6,7)			clay. (HEA	ND)			I medium S	AND w	vith rare small poc	kets of	silty	16.10	(0.60)	-5.68	× / × · × · × · × · × · × · × · × · × ·	
17.00 - 1 17.00 - 1 17.00 - 1 18.50 - 1 18.50 - 1	17.45 17.45 0	S	PT B D SPT B D	(5,8,	/165mm ,12,17,21 /265mm 1,14,14,1			to rou	stiff reddish unded fine a .CIAL TILL)					ly CLAY. Gravel is ne.	subang	gular ¹⁷ 18 -	17.00	(3.40)	-6.58		
		P	rogres	s and	Observ	/ation	s				Chisell	ing	1) Ha	eral Remarks: and dug inspect	ion pit	20 -	ounc	l level	to 1.2	20m bg	1. 2)
Rig C	Date	Time	Borehole Depth (m)		Casing Diam.(mm)	Water Depth (m)		lush ype	Returns (colour)	From (m)	To (m)	Duration (HH:MM)	Cable comp from	e percussive dri bleted at target of 3.00m to 20.00 imination.	lling fro depth a	om 1.20 and inst 4) No v	Om to alled visual	20.4 I with I or ol	0m bo	l. 3) H nse zo	ole ne nce of

							Project: Garth Wymott 2								Borehole No						
Hyd	roc	ck											BH105								
															Pag	je No	o. 3 c	of 3			
Method:	Cable	Percus	ssion				Da	ate(s): 1	8/08/2	2021 -	19/08/20	021	Logged By:	RC	[Drilled	Ву: [DMW D	rilling		
Client: Mi	nistry	of Just	ice				C	o-ords: 3	350418	8.01, 4	20761.6	60	Checked By	/: RS	-	lush					
Hydrock F	Project	No: C	-19851				G	round Le	evel: 1	0.42m	OD					Scale		50			
		nples / T			ater-	Strikes				Stra	atum Desc	cription	n		the lea	Thickness (m))D D	Pegend	Instrum- entation / Backfill		
Depth (m) 20.00		Type SPT	50.	Results /245mm		١,				lightly sai	ndy slightly	gravell	ly CLAY. Gravel is	subangular	De de	ĒĒ	Level m OD) Fee	Ins ent / Be		
20.00 - 20.45 20.00 - 20.45	5	B D	(8,11,1	2,12,13,1	13)	1	o rou	inded fine a CIAL TILL)		um of mu		siltstor			20.40		-9.98				
20.00 - 20.4	9	D								Enc	of Borenole a	t 20.40m									
														21							
														22							
														23							
															1						
															1						
														24	1						
															1						
															1						
														25	1						
														26	1						
														27	1						
															1						
														28							
														29	1						
														30	1						
	P	rogres	s and	Observ	/ation	s			(Chisell	ing		eral Remarks: and dug inspecti	on pit from o	roun	leve	l to 1 '	20m hc	ıl. 2)		
Rig Date	Time	Borehole		Casing	Water	Flu Ty		Returns (colour)	From (m)	To (m)	Duration (HH:MM)	Cable comp from :	e percussive dril eleted at target of 3.00m to 20.00r emination.	lling from 1.2 lepth and ins	0m to	20.4 with	0m bo	gl. 3) H nse zo	ole ne		
														L	ogged in	general a	accordan	ce with BS	5930:2015		



Ну	dro	ck					Proj	ect	G	arth W		Borehole No BH106 Page No. 3 of 4							
Metho	d: Rota	rv Core	ed				Date(s): 10	6/08	3/2021 - 1	17/08/20)21	Logged By:		Ť			01 4 0MW D	rilling
	Ministr									⁷ 26.26, 4			Checked B		F	lush	: Air	Mist	
Hydro	ck Proje	ct No:	C-19851	l			Groui	nd Le	evel:	: 13.16m	OD			<u>- </u>	5	Scale	e: 1:	50	
Sample/Cor		Sampl	es / Tests	i	М	echar	nical Lo	g	ter- kes		Str	atum l	Description		ے	Thickness (m)	-0	pu	r io iii ¥iio iiii
Run (m)	Depth (m) 20.00 20.00-20.45 20.05-20.45	Type SPT B D	50/8	sults 5mm (24,26)	TCR	SCR	RQD	OG Min If: Mean Max	Wa	slightly sar rounded fir	ming stiff to ndy slightly ne and med nd quartzite	very st gravell	Description tiff with depth rec y CLAY. Gravel is mudstone, sand	s angular to	Depth	Thick (m)	Level m OD	pueden	Instrum-
23.50 - 25.00 -	24.45 24.65 24.65 24.65	ES C C			77	35	7	0 30 80		interbedde fractures a 280mm), s with local of adjacent to (SINGLET: Betw of core Betw and da Betw	d grey silts re very clos sub horizon clay mearing of fractures to ON MUDST even 23.50n loss due to veen 23.85nrk grey grav reen 24.10n	tone. D sely to I sely to I g up to up to 2r TONE I n and 2 weathe n and 2 vel of m n and 2	MEMBER) 3.85m bgl: assun ered rock. 3.90m bgl: NI as	edding (60, 80, 100, r to undulating, of strength ned zone dark red	23.50	(3.00)	-10.34		
26.50 - 26.50 - 28.00	25.60 - 25.70 25.60 - 25.77 25.95 26.00 - 26.29	C C C			77	48	33	0 80 280		Betw gravel of Betw of core Betw grey sil Betw red sar Very weak	veen 24.30n of mudstone veen 24.50n of mudstone veen 25.00n loss due to veen 25.40n tstone. veen 26.35n dy clay. dark grey \$	n and 2 e. n and 2 e. n and 2 weathe n and 2 m and 2	14.35m bgl: NI as 14.55m bgl: NI as 15.35m bgl: assun	dark red ned zone edded 26 soft dark nterbedded	26.50		-13.34	××××××××××××××××××××××××××××××××××××××	
00.00	27.35 - 27.50 27.35 - 27.50 27.70 -	C C			100	60	18	20		are closely (5-10°), rou to 1-2mm v up to 3-5m (SINGLET	spaced (80 ugh and unwith local lo with local lo um. ON MUDS	0, 90, 1 dulating ss of s	I20, 150mm), sul g with local clay s trength adjacent	o horizontal smearing up ²⁷ to fractures	28.00	(1.50)	-14.84	× × × × × × × × × × × × × × × × × × ×	
28.00 - 29.50 - 29.50 - 31.00	28.68 28.68 - 28.78 29.15 - 29.25 29.15 - 29.25	C C C			100	95	37	0 60 150		dark grey in 1: Bedding 100, 220m with local conformation of to fractures widely sparough and sandy sitts fractures u (SINGLET: Betw.	medium stro fractures a m), sub hoi clay smearii fractures up s up to 2-3r ced (170, 4 smooth, un smearing ar p to 5-10m ON MUDST veen 29.50n loss due to	ong SIL are clos rizontal ng up to to to 5mi mm. Se 100, 900 ndulatin nd loss m. TONE M n and 2 weathe	9.75m bgĺ: assun ered rock.	ntinuities; Set baced (60, 80, and undulating ised clay thadjacent edium to al 60-85°), 29 ith local cent to			. 7:07		
		Progre	ss and	Observ	atione			1		L		Gene	on Next Sheet ral Remarks:		1				
Rig	Date Tim	Boreho		Casing	Water Depth (m)	Flush Type		turns olour)	From (m)	m To	Duration (HH:MM)	Cable cored compl from 1	nd dug inspect e percussive dri follow on driju leted at target 14.00m to 26.0 ntamination.	illing from 1.2 ng from 20.45 depth and ins	0m to m to talled	20.4 32.50 with	5m bg m bg respo	II. 3) Ro . 4) Ho nse zo	otary le ne

Hve	dro	ck				Proj	ect	: G	arth Wymott 2		Borehole No BH106						
						D 1		0/06	17/00/004		lo. 4 of 4						
	: Rotar Ministry									,	d By: DMW Dr h: Air Mist	rilling					
			C-19851						13.16m OD		le: 1:50						
	T TOJEC		es / Tests	М	echa			_				1 c =					
Sample/Core Run (m)	Depth (m)	Туре	Results	TCR	SCR	RQD	Min If: Mean Max	Wate	Stratum Des	escription High Pickness 17	Level m OD Legend	Instrum- entation / Backfill					
31.00 -	30.60 - 30.81	С		83	30	10	Max		Very weak dark red MUDSTONE dark grey medium strong SILTS 1: Bedding fractures are closely 100, 220mm), sub horizontal (5- with local clay smearing up to 1r infilling of fractures up to 5 mm. I to fractures up to 2-3mm. Set 2: widely spaced (170, 400, 900mr	E with local interbedded STONE. Discontinuities; Set to medium spaced (60, 80, -10°) rough and undulating mm and localised clay Loss of strength adjacent Joints are medium to m), sub vertical 60-85°),							
32.50	31.65 - 31.81 31.65 - 31.81	C C		100	55	36			rough and smooth, undulating a sandy silt smearing and loss of fractures up to 5-10mm. (SINGLETON MUDSTONE MEI Between 30.30m and 30.3 and dark grey gravel of muds Between 30.50m and 30.5 and dark grey gravel of muds Between 30.70m and 30.8 and dark grey gravel of muds Between 31.00m and 31.3 and dark grey gravel of muds Between 31.60 to 31.70: N of mudstone.	strength adjacent to MBER) 88m bgl: NI as dark red stone. 88m bgl: NI as dark red stone. 80m bgl: NI as dark red stone. 90m bgl: NI as dark red stone. 90m bgl: NI as dark red stone. 91 as dark red sifty gravel	-19.34						
		Progre	ss and Obser	vations					Chicalling General	33 - 34 - 34 - 35 - 35 - 36 - 37 - 39 - 39 - 39 - 39 - 39 - 39 - 39							
Rig Da	Time	Borehol		Water	Flush Type		eturns olour)	Fro (m	n To Duration Cable pe cored fol complete from 14.0	dug inspection pit from ground levercussive drilling from 1.20m to 20 llow on drilling from 20.45m to 32.9 ed at target depth and installed wit 00m to 26.00m bgl. 4) No visual or mination.	.45m bgl. 3) Ro 50m bgl. 4) Hol h response zon	tary e ne					
IoleBASE SI -										Logged in gener	al accordance with BS59	930:2015					

Hydrock								P	Project: Garth Wymott 2							Borehole No						
Н۱	/di	o c	k						-								E	3H	107	7		
																			o. 1 d			
			Percus					_	ate(s): 2					Logged						DMW D	rilling	
			of Justi					_	o-ords: 3				57	Checked	d By: F	RS		lush				
Hydr	ock P			-1985 [^]	1			G	round Le	evel: 1	0.90m	OD							: 1:	50		
Dep	th (m)		nples / T		Results	Water	Strikes				Stra	itum Desc	ription				Depth	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill	
0	.10		ES \SB				$ \top $		HALT HARD JMINOUS M								0.10	(0.10)	10.80		= o -	
Ü	.20	,	.00					Grey	angular to s stone with o	ubround ccasiona	ed sandy	fine to coa	rse GR. enish gi	AVEL of lime rey sandy Cl	estone ai LAY.	nd	0.30	(0.20)	10.60			
								Stron		reinforce				70% aggrega		gular to	<i>J</i>	(0.90)				
									DE GROUNE		graveis	n quantzite,	iiiiesio	nie and mud	Storie.		1 = 1					
											End	d of Borehole a	t 1.20m				1.20		9.70	*******	2///>2///	
																	2					
																	1					
																	3 -					
																	1					
																	1					
													1									
																	1					
																	-					
																	5 -					
]					
																	}					
																	3 -					
																	´ -					
																	}					
																	7 -					
																	3 -					
																,	,					
			rocra	0.024	Ohari	/oti-				,	Chia - III	ina		al Remark		11						
Rig	Date	Time	Borehole	s and Casing	Casing	Water	FI	lush	Returns	From	Chiselli ™	Duration	1) Har obstru	nd pit to 0.3 action with a	30m bgl an exca	avator. 2)	Unab	le to	orobe	base o	f 📗	
riy	Date	iiiie	Depth (m)	Depth (m)	Diam.(mm)	Depth (m) T	уре	(colour)	(m)	(m)	(HH:MM)	concre with c	ete at 1.20r old lay mad	m bgl, p cadam.	oit backfil 3) No vis	led wi sible c	th aris	ings a	and fini evidenc	shed e of	
														mination. 4 ued to fill p		ndwater s	eepa	ge at ().60m	bgl wh	ich	
										1						L	ogged in	general	accordan	ce with BS5	930:2015	

Hydrock T							F	Project: Garth Wymott 2							Borehole No BH107A						
Hy	/di	roc	:k ⁻																		
			Percus					N-4- (-)- O	0.100.10	2004		<u>.</u>		D D.		Ť	e No				
								Date(s): 2			20690.0		ogged				lush		JIVIVV L	Orilling	
			of Just		4		-	Co-ords: 3				93	Checke	а ву: г	15	_					
Hyar	OCK P			-19851	l	Π.	-	Fround Le	evei: 1	1.05M	OD						Scale	: 1:	50	-	
Dep	th (m)		nples / T		Results	Water-	Strikes			Stra	tum Desc	cription				Depth	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill	
								ss over firm o	lark brow	n slightly	sandy CLA	AY with fre	equent ro	otlets.		0.15	(0.15)	10.90			
0	.40	1	ES				Gra con (MA	dark brown s vel is angular crete with ran DE GROUNI At 0.30m be	to subro e fragme D)	ounded finents of gla	e to coarse ss.	e of variou	us litholog	ies includ	ling brick,	0.90	(0.75)	10.15			
1	.20		SPT		N=15		Firm	(40 x 70mm) I locally soft (tled light b	orown sligh	tly sandy	CLAY.		1/-		(0.50)				
	- 1.65		В		2,3,3,4,5)		'	DE GROUNI	,	n mottled	liaht arev sl	lightly sar	ndv CLAY.			1.40		9.65			
	- 1.65		D				(HE					,	,				(0.50)				
2	.00	S	SPT		N=11		Firm	n locally stiff r	eddish b	rown sligh	ntly sandy s	slightly gra	avelly CL	AY. Grave	elis 2.	1.90		9.15			
	- 2.45 - 2.45		B D	(1,2	2,2,3,3,3)		(HE		indea iin	e to coars	se oi muasi	torie, siits	torie and	sanusion	e.						
2.00	- 2.45		D																		
_																					
	.00	8	SPT		N=17 3,3,4,5,5)										3 -						
	- 3.45 - 3.45		B D																		
4	.00	S	SPT	(1.0	N=8										4 -						
	- 4.45 - 4.45		B D	(1,2	2,1,2,2,3)																
4.00	- 4.40		D																		
5	.00		SPT		N=12										-						
	- 5.45		В		2,3,3,3,3)										5 -						
	- 5.45		D														(7.00)				
															6 -						
	- 6.95 - 6.95		U U	(1	7,100%)																
															7						
															, -					1: :	
8	.00	S	SPT		N=23 4,5,5,6,7)										8 -						
	- 8.45 - 8.45		B B	(1,	1,0,0,0,1)																
8.00	- 8.45		D																		
							Stiff	locally firm g	rey sligh	tly sandy	slightly gra	velly CLA	Y. Gravel	is suban	gular to g.	8.90		2.15			
							rour (HE	nded fine to c AD)	oarse of	mudstone	Э.	•			- 9-	9.30	(0.40)	1.75			
9	.50	S	SPT		N=10			se reddish br AD)	own silty	fine and	medium SA	AND.				9.60	(0.30)	1.15			
	- 9.95		В	(1,1	1,2,2,3,3)		Firm (HE	reddish brov AD)	wn silty C	CLAY.						5.00		1.40	×		
9.50	- 9.95		D									1.			10 -				^		
		Р	rogres	s and	Obser	vation	8			Chiselli	ing	1) Hand		pection	pit from gr						
Rig	Date	Time		Casing Depth (m)	Casing Diam.(mm)	Water Depth (m)	Flush Type	Returns (colour)	From (m)	To (m)	Duration (HH:MM)	visual o	r olfacto	ry evidei	g from 1.20 nce of con	tami	natior	note	d. 4) H	ole	
													ted at tai 00m to 1		th and inst gl.	allec	l with	respo	nse zo	one	
															Lor	gged in	general:	accordan	ce with BS	5930:2015	

l la calc						Project	: Ga	rth V	/ymot	t 2				reho H1			
Hydı	rock													e No			
Method: C	Cable Pe	rcussion				Date(s): 2	6/08/2	2021			Logged By: R					MW D	rilling
Client: Mir	nistry of J	Justice			(Co-ords: 3	35037	5.21, 4	20689.9		Checked By:		F	lush	:		
Hydrock P			 51		(Ground Le	evel: 1	1.05m	OD				S	cale	: 1:	50	
		es / Tests		-F	-												± 5.∰
Depth (m)	Туре		Results	Water-					atum Desc				Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
20.00 20.00 - 20.45	SPT B		50/190mm 10,13,18,19	9)	is s	f becoming ve ubangular to r .ACIAL TILL)	ry stiff re ounded	eddish bro fine to co	own slightly arse of mu	sandy dstone	slightly gravelly CLA and siltstone.	-	20.34		-9.29		
20.00 - 20.45					(6	ACIAL TILL)		End	of Borehole at	t 20.34m							
												-					
												21 -					
												- -					
												-					
												22 -					
												- -					
												-					
												23 -					
]					
												-					
												24					
												-					
												-					
												-					
												25 -					
												-					
												-					
												26 -					
												-					
												-					
												27 –					
												-					
												-					
												28 -					
												-					
												-					
												29 -					
												-					
												- -					
												-					
	Droc	gress an	d Obsor	vations				Chisell	ina	Gene	ral Remarks:	30 -					
Rig Date	Time Bor	rehole Casir	g Casing	Water	Flush	Returns	From	То	Duration	Cable	nd dug inspection percussive drillin	g from 1.20	m to	20.3	4m bo	Jl. 3) N	0
Aug Date	Dep	oth (m) Depth	m) Diam.(mm)	Depth (m)	Туре	(colour)	(m)	(m)	(HH:MM)	compl	or olfactory evide	oth and insta					
										from 5	5.00m to 14.00m l	ogi.					
HoleBASE SI - Hydr	ock Cable Percus	esion Tomplate v										Log	ged in g	general a	ccordan	e with BS	5930:2015

⊔.	. لی		-l/				F	Project	: Ga	rth W	/ymot	t 2				oreho 3H			
П	/dı	U	LK													ge No			
Meth	od: C	able	Percus	ssion				ate(s): 3	1/08/2	021			Logged B	y: RC	[Drilled	By: [DMW D	rilling
Clien	t: Min	istry o	of Just	ice			C	Co-ords: 3	35057	5.03, 4	20752.7	76	Checked	By: RS	F	Flush	1:		
Hydr	ock P	roject	No: C	-1985	1		C	Fround Le	evel: 1	1.40m	OD				5	Scale	: 1:	50	
		Sar	nples / T	ests		ater-	Strikes			Stra	atum Desc	ription			£ _	Thickness (m)	₩ Q	pue	Instrum- entation / Backfill
Dep	th (m)	1	Гуре		Results	3		ss over firm o	lark brow				frequent rootle	ts.	Depth 0.10	(0.10)	11.30	Legend	Instreenta enta / Ba
							\(TO	PSOIL) orangish bro	own sand	dy gravell	y CLAY. Gr			subangular fine	0.35	(0.25)	11.05		
0	50	F	ISV		59kPa		\(<u>(MA</u>	oarse of brick	D) prown sli			Gravel i	is angular to s	ubrounded fine		(0.80)			
1	.20	5	SPT	(1.	N=7 1,1,2,2,2)		Soft (HE	reddish brov	vn mottle	d grey Cl	LAY.				-1.15		10.25		
	.20 .20		B D	(,,	.,.,_,_,_,		(112)								(0.75)			
2	.00 .00 .00 - 2.45	\$	SPT B D D		N=12 2,2,3,3,4)			ular to rounde					gravelly CLAY. Itstone.	Gravel is	1.90		9.50		
3	.00		SPT		N=8									:	3 -				
3	.00		В	(1,	1,1,2,3,2)														
3	.00		D																
	.00 - 4.45		U U	(1:	2,100%)									•	1				
5	.00	8	SPT	(1,2	N=9 2,2,2,2,3)										5 -				
	.00		B D	(1)-	-,-,-,-,											(6.80)			
	.50		SPT		N=13										5 -				
6	.50 .50 .50		B D		2,3,3,3,4)										7 -				
8	.00	8	SPT		N=10 3,3,2,2,3)									ŧ	3 -				
	.00		B D		,										-				
							Firm	sandv slight	lv gravel	lv CLAY.	Gravel is a	ngular to	o rounded, fine	to coarse of	8.70		2.70		
								stone and sil		.,		· · · · · · ·			,]				
]	(1.40)			
	.50	8	SPT		N=10 1,1,2,3,4)										}	(1.40)			
	.50 .50		B D											10]				
		Р	rogres	s and	Observ	vation	s		(Chisell	ing		ral Remarks:			<u> </u>		20: !	
Rig	Date	Time	Borehole	Casing	Casing Diam.(mm)	Water	Flush Type	Returns (colour)	From (m)	To (m)	Duration	Cable depth contar	percussive of 17.45m b	ction pit from odrilling progres gl. 3) No visua ed. 4) Installed ogl.	sed fr I or ol	om 1. factor	20m t y evic	o targe ence o	t f
								1						L	ogged in	general	accordan	ce with BS5	930:2015

								F	roject	: Ga	rth V	/ymot	t 2					reh			
Н۱	ydı	m	-k ⁼														E	3H	108	3	
'''	y GI	O.															Pag	ge No	o. 2 d	of 2	
Meth	nod: C	able	Percus	ssion				D	ate(s): 3	1/08/2	021			Logge	d By: R	С		Drilled	Ву: [DMW E	Prilling
Clier	nt: Min	istry	of Just	ice				С	o-ords: 3	35057	5.03, 4	20752.7	76	Check	ed By: F	RS	F	Flush	1:		
Hydı	ock P	roject	t No: C	-1985	1			G	round Le	evel: 1	1.40m	OD					5	Scale	: 1:	50	
		Sar	nples / T	ests			Water- Strikes				Stra	atum Desc	cription	1			₽_	Thickness (m)	- O	pue	um- tion Skfill
Dep	oth (m)	1	Гуре		Results		> წ	Firm	sandy slight	lv gravel			·		fine to co	arse of	Depth 10.10	iệ Œ	D Ce ve I	Legend	Instrum- entation
								muds (HEA	stone and sil AD)	tstone.			guiui t		,	u. 55 5.	Ā	(0.40)		× × ×	
								(HEA	dish brown si ND)	-							10.50		0.90	x: ^. > ×	
								Firm (HEA	locally soft r AD)	eddish b	rown silty	/ CLAY.								×	
	1.00		SPT		N=10 2,2,2,3,3)											11				×	
	1.00 1.00		B D																	<u>×</u>	
																				×_×_	
																12	-			<u>×_×</u> _	
																				<u>×</u> _×	
1:	2.50		SPT	(1.:	N=9 2,2,2,2,3)												1			×_×_	
	2.50 2.50		B D	(),	_,_,_,													(4.40)		<u>×</u>	
																13	-			×_×_	
																				<u>×_×</u>	
																				<u>×_</u> _	
1-	4.00		SPT		N=13											14	-			× × ×	
	4.00		В	(2,2	2,3,3,3,4)												1			×	
1.	4.00		D																	×	
																	14.90		-3.50	× ×	
								is su	becoming ve bangular to r CIAL TILL)	ry stiff re rounded	fine to co	own slightly arse of mu	dstone	and siltsto	ne.	Y. Gravel ₁₅					
1	5.50		SPT		N=27			(OL)	IOIAL TILL)												
	5.50		В		4,5,7,7,8)																
	5.50		D													16]				
																	-	(2.55)			
																	1				
	7.00		SPT	(5,6,	N=42 7,10,11,14	1)										17					
	7.00 7.00		B D								Fnc	I of Borehole a	t 17 45m				17.45		-6.05		
											2.10	. 01 201011010 0					}				
																18	-				
]				
																	1				
																19	1				
																	-				
_						[_	L								20	1				
		Р	rogres	s and	Observ	/atio	ns			(Chisell	ing		ral Rema		pit from g	round	d leve	l to 1	20m bc	1. 2)
Rig	Date	Time	Borehole	Casing	Casing Diam.(mm)	Water		Flush Type	Returns (colour)	From (m)	To (m)	Duration	Cable	percuss	ive drilling	g progress No visual	sed fr	om 1.	20m 1	o targe	et
						Ì			,		. ,		contai	mination n to 12.00	noted. 4)	Installed	with i	respoi	nse zo	one froi	m
													0.0011	12.00	byl.						
																Lo	ogged in	general	accordan	ce with BS	5930:2015

								Project	Ga	rth W	/ymot	t 2				reho			
Ну	dr	00	k					-			-				E	3H	109)	
													T		Ť	e No			
			Percus					Date(s): 0					Logged By: R		-			DMW D	rilling
			of Just					Co-ords: 3				5	Checked By:	AC		lush			
Hydro	ck Pı			-1985 ²	1		(Ground Le	evel: 1	1.87m	OD					Scale	: 1:	50	
Donth	(m)	1	nples / T		Results	Mater.	Strikes			Stra	atum Desc	riptior	ı		g bth	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
Depth	(111)	'	Туре		Results	+	Gra						velly CLAY with rare		- 2 5	(0.30)	3 6	ů XXX	e la
							(TC	PSOIL)					sandstone and quar O. Gravel is subangul		0.30	(0.30)	11.57		
0.60 - 0.7			B ES				sub	rounded fine (iai to	0.60	(0.50)	11.27		
0.7	O	'	LO				Stif	f reddish brow angular to sul					caceous CLAY. Grave e, sandstone and qu		<u></u>				
1.2	0	S	SPT		N=15 2,2,3,4,6)		(HE	EAD)							1				
1.20 - 1.20 -			B D	(1,2	2,2,3,4,0)										1	(1.85)			
1.20 -			Ū												1				
2.00 - 2.00 -			U U	(2:	3,100%)									2	1				
								-1 " *	1-2 *		-0-10		LAV	:_ b .	2.45		9.42		
							of c		yey sand				LAY with rare very th ubrounded fine and i		1				
3.0	0	S	SPT		N=13			EAD)	isiono.					3	-				
3.00 -			В	(2,2	2,3,3,3,4)										1				
3.00 -	3.45		D												1				
															1				
4.0			SPT		N=11 2,2,3,3,3)									4					
4.00 - 4.00 -			B D												1				
															1				
5.0	0	s	SPT		N=12									5	-				— .
5.00 -			B D	(2,2	2,2,3,3,4)										-				
5.00 -	5.45		D												1				
															1	(2.05)			
														6	1	(7.05)			
6.5	0	s	SPT		N=9														
6.50 -	6.95		В	(1,2	2,2,2,2,3)										1				
6.50 -	6.95		D											7	1				
															-				
0.0	0		NDT.		N-40]				
8.00 -			B B		N=10 1,2,3,2,3)			Between 8. coarse sand.	00m and	8.50m bg	gl: Thin band	ds of da	ark brown clayey fine	to ⁸]				
8.00 -			D												1				
															1				
														9	-				
9.5			SPT		N=16 3,3,4,4,5)			n locally soft o					LAY. Gravel is suban	gular to	9.50		2.37		
9.50 - 9.50 -			B D					AD)						10					
		P	rogres	s and	Observ	∟ vation	s		(Chiselli	ing		ral Remarks:			l laste	to 4	20~ '	1 3)
Rig	Date	Time	Borehole	Casing	Casing Diam.(mm)	Water	Flush	Returns (colour)	From (m)	To (m)	Duration	Cable	nd dug inspection e percussive drillin I or olfactory evide	g from 1.2	0m to	20.4	5m bo	gl. 3) N	o ´
			Sopul (III)	Sopul (III)	, 2(11111)	Sopul (III	туре	(colour)	(111)	(111)		comp	i or olfactory evide leted at target dep 5.00m to 13.00m b	oth and ins					
												moili :	J. 00111 to 13.00111 t	ogi.					
						1								Lo	ogged in	general a	accordan	ce with BS5	5930:2015

								Project	: Ga	rth W	/ymot	t 2				reho			
Н١	/di	n (:k ⁼												E	3H′	109)	
													I		Pag	je No). 2 d	of 3	
Meth	od: C	able	Percus	ssion			I	Date(s): 0	7/09/2	:021 - (09/09/20	21	Logged By: R	S		rilled	Ву: [DMW D	rilling
Clier	nt: Min	istry (of Just	ice			- (Co-ords: 3	350614	4.69, 4	21000.1	5	Checked By: A	AC .	F	lush	:		
Hydr	ock P	roject	No: C	-19851	1			Ground Le	evel: 1	1.87m	OD					Scale	: 1:	50	
			nples / T			Water-	tinkes			Stra	atum Desc	ription	1		pth g	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
Dep	oth (m)	'	Гуре	'	Results		Fire						LAY. Gravel is suban	gular to	- E	F E	Le	9	lns B
11.00 11.00 12.50	1.00 - 11.45 - 11.45 2.50 - 12.95 - 12.95		SPT B D SPT B D	(3,2	N=17 2,4,4,4,5) N=5 1,1,1,1,2)		(HE	fine to coarse	1.00m an sand.	d 11.45m	bgl: Rare 20	0mm ba	ands of dark brown cla brown gravelly clayey	12		(4.50)			
14.00	4.00 - 14.45 - 14.45	Ç	SPT B D		N=11 2,3,3,3,2)			n dark brown EAD)	silty CLA	Y.				14	14.00		-2.13	× × × × × × ×	
15.50 15.50	5.50 - 15.95 - 15.95 - 15.95	\$	SPT B D U		N=14 3,3,3,4,4)									15		(4.50)		X X X X X X X X X X X X X X X X X X X	
17.00	7.00 - 17.45 - 17.45	Ç	SPT B D		N=13 3,3,3,4,3)									17				× × × × × × × × × × × × × × × × × × ×	
	- 18.95 - 18.95		U U	(2	7,100%)		rou	y stiff reddish nded fine to c .ACIAL TILL)	brown si oarse of	lightly sar mudstone	ndy gravelly e, sandstone	CLAY. e and d	Gravel is subangula quartzite.	r to	18.50	(1.95)	-6.63	×	
												C	ral Days and s	20	1			i k (king)	
Rig	Date	Time	Borehole	Casing	Casing Diam.(mm)	Water	Flush Type	Returns (colour)	From (m)	To (m)	Duration (HH:MM)	1) Ha Cable visual comp	ral Remarks: nd dug inspection percussive drilling or olfactory evide leted at target dep 5.00m to 13.00m b	g from 1.2 nce of cor th and ins ggl.	0m to ntami talleo	20.4 nation I with	5m bọ note respo	gl. 3) N d. 4) H	o ole ne

							P	roject	Ga	rth W	/ymot	t 2				reho			
Hydi	oc	k^{-}														3H′			
													1		$-\tau$	e No			
Method: C								ate(s): 0					Logged By:					MW D	rilling
Client: Min							_	o-ords: 3				15	Checked By	r: AC	_	lush			
Hydrock P				1			G	round Le	evel: 1	1.87m	OD					Scale		50	
		oles / Te			Water.	Strikes				Stra	atum Desc	cription	n		pth ggl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
Depth (m) 20.00	Typ SP			N=36			Very	stiff reddish	brown s	lightly sar	ndy gravelly	/ CLAY	. Gravel is subang	ular to	<u>a f</u>	도트	аE	. Fe	en /B
20.00 - 20.45 20.00 - 20.45	B	3	(3,4,	7,8,10,11)			ded fine to co CIAL TILL)	oarse of						20.45		-8.58		
20.00 - 20.40		,								End	of Borehole at	t 20.45m							
														21]				
]				
															1				
														22]				
															1				
															1				
														23	1				
]				
]				
														24	-				
															}				
														25					
														26	1				
														27					
														28					
															1				
															-				
														29	1				
															-				
												Geno	eral Remarks:	30	_				
1	I -			Obser			leh	Pot		Chisell		1) Ha	eral Remarks: and dug inspection e percussive drill	on pit from g	round	l level	to 1.5	20m bg	1. 2)
Rig Date		Borehole Pepth (m)		Casing Diam.(mm)	Water Depth (m		pe	Returns (colour)	From (m)	To (m)	Duration (HH:MM)	visua	e percussive drii al or olfactory evi oleted at target d	dence of cor	ıtami	nation	note	d. 4) Ho	ole
													5.00m to 13.00n		50				
														Lo	gged in	general a	accordan	ce with BS5	930:2015

Borehole No WS101

Page No. 1 of 1

Method: Window Sampler Date(s): 23/09/2021 Logged By: RS Drilled By: DMW Drilling Client: Ministry of Justice Co-ords: 350487.40, 420749.55 Checked By: AC Rig: Dando Terrier Scale: 1:30

Hydrock Project No: C-19851 Ground Level: 10.51m OD

	C-198	.		Cround	d Level: 10.51m OD			Juan	e: 1:	00	
ıfo		Test	ting	Water-	0, , ,			ssau		p	£ 5
ecovery	Depth (m)	Туре	Results	Strikes	Stratum Desc	cription	Depth mbgl	Thickr (m)	Level m OD	Leger	Instrum-
	0.10	ES			Soft dark sandy CLAY with rare rootlets (TOPSOIL)	S.		(0.25)			
	0.35 0.35	ES PID	0.2ppm					(0.35)			
	0.60 - 0.80	В			Gravel is subangular to subrounded fin mudstone. (HEAD)	e to coarse of siltstone and	0.60	(0.60)	9.91		
100%	1.20 - 1.65 1.20 - 2.00	SPT D B	N=8 (1,2,2,2,2,2)		Firm becoming stiff reddish brown slight CLAY. Gravel is subangular to subroun mudstone and siltstone. (HEAD)	ntly sandy slightly gravelly ded fine and medium of	1.20		9.31		
100%	2.00 2.00 - 2.45	SPT D	N=14 (2,3,3,3,4,4)			2 -					
0%	3.00	SPT	N=18 (3,3,4,4,5,5)			3-		(4.25)			
100%	4.00	SPT	N=38 (7,9,9,9,10,10)		Between 4.00m and 4.45m bgl: Bo	ecomes very stiff. 4 -					
	5.00	SPT	N=28 (4,6,6,6,8,8)			5-	5.45		5.06		
1	00% 00%	0.10 0.35 0.35 0.60 0.80 0.00 1.20 1.20 1.65 1.20 2.00 2.00 2.45 0% 3.00	Depth (m) Type	Depth (m) Type Results	Depth (m) Type Results Strikes	Covery Depth (m) Type Results Stratum Description	Depth (m) Type Results Strikes Stratum Description	Soft dark sandy CLAY with rare rootlets.	Soft dark sandy CLAY with rare rootlets.	Series S	Soft dark sandy CLAY with rare rootlets.

General Remarks:

1) Hand dug inspection pit from ground level to 1.20m bgl. 2) Dynamic windowless sampling drilling from 1.20m to 5.45m bgl. 3) No visual or olfactory evidence of contamination. 4) Backfilled with arisings on completion.

Borehole No WS102

Page No. 1 of 1

Method: Window Sampler Date(s): 23/08/2021 Logged By: RS Drilled By: DMW Drilling Co-ords: 350589.70, 420821.22 Checked By: AC Client: Ministry of Justice Rig: Dando Terrier

Hydrock Project No: C-19851 Ground Level: 11 84m OD Scale: 1:30

Hydroc	k Proj	ect No	: C-198	51		Ground	d Level: 11.84m OD		_ {	Scale	e: 1:	30	
Samp	ole Run	Info		Tes	ting	Water-	Chrotine Dane	orintion	_	ness		P.	<u> </u>
Sample Run	Run Ø	Recovery	Depth (m)	Туре	Results	Strikes	Stratum Desc	cripuon	Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation
			0.20 - 0.50 0.20 - 0.50 0.30 - 0.40 0.30	B B ES	0.1ppm		Grass over firm dark brown and orangi with medium cobble content. Gravel is concrete, brick, sandstone, mudstone, fragments of timber, metal and plastic. concrete. (MADE GROUND- POND BACKFILL)	ish brown sandy gravelly CLAY angular to subangular of coal and limestone with rare Cobbles are subangular of	0.70	(0.70)	11.14		
4.00	07	700/	0.80	D SPT	N-E		Soft orangish brown and greyish brown with low cobble content. Gravel is subacoarse of mudstone, sandstone, coal a timbers. Cobbles are subangular to sul mudstone. (MADE GROUND- POND BACKFILL)	angular to subrounded fine to and brick with rare fragments of		(0.70)			
1.20 - 2.00	87mm	70%	1.20 - 1.65	D	N=5 (4,2,0,1,2,2)		Very soft greyish brown sandy CLAY w	vith a moderate organic (humic)	1.40		10.44	23 (41.12) 64	
			1.30 1.65 1.65	ES D D			odour. (NATURAL- POND INFILL) Between 1.70m and 2.00m bgl: N			(0.60)		alk alk s alk s alk alk s alk s alk alk	
0.00		450/	0.00	ODT	N. O			-	2.00		9.84	عالد عالد	
2.00 - 3.00	77mm	45%	2.00 2.00 - 2.45 2.00 - 2.45	SPT D D	N=0 (0,0,0,0,0,0)		Very soft black and dark brown peaty ((humic) odour. (NATURAL- POND INFILL) Between 2.45m and 3.20m bgl: Li		2.00		5.04	alic alic s alic a alic alic s alic a alic alic s alic alic	ŀ.°H.
3.00 - 4.00	67mm	70%	3.00 3.00 - 3.45	SPT D	N=15 (3,4,4,3,4,4)			3-	3.20	(1.20)	8.64	e alte a alte alte e alte alte alte alte e alte alte e alte alte e alte a alte alte e alte a alte alte e alte a alte alte alte alte e alte alte alte alte	
			3.45 3.45	D			Firm light brown sandy slightly gravelly fine of mudstone and siltstone. (GLACIAL TILL)	CLAY. Graver is subangular		(0.80)			
4.00 - 5.00	57mm	100%	4.00 4.00 - 4.45	SPT D	N=16 (4,4,4,4,4,4)		Stiff reddish brown sandy slightly grave fine of mudstone and siltstone. (GLACIAL TILL)		4.00		7.84		
			5.00 5.00 - 5.45	SPT D	N=17 (3,4,3,4,5,5)			5- - - -	5.45	(1.45)	6.39		
							End of Borehole a	st 5.45m - - - - - - -	-		5.30	-	

General Remarks:

1) Hand dug inspection pit from ground level to 1.20m bgl. 2) Dynamic windowless sampling drilling from 1.20m to 5.45m bgl. 3) No visual or olfactory evidence of contamination. 4) Installed on completion with a response zone from 0.50m to 3.00m bgl.

Borehole No WS103

Page No. 1 of 1

Method: Window Sampler Date(s): 25/08/2021 Logged By: RC Drilled By: DMW Drilling Co-ords: 350222.33, 420184.91 Checked By: RS Client: Ministry of Justice Rig: Dando Terrier Scale: 1:30

Hydrock Project No: C-19851 Ground Level: 14 21m OD

Hydroc	k Proj	ect No	: C-198	51		Ground	d Level: 14.21m OD			Scal	e: 1:	30	
Samp	ole Run	Info		Tes	ting	Water-				ssət		ъ	£ 5
Sample Run	Run Ø	Recovery	Depth (m)	Туре	Results	Strikes	Stratum Desc	cription	Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation
			0.20 0.20 0.30 - 0.70 0.35 - 0.70 0.50	ES ES B			Grass over firm dark brown sandy slight frequent rootlets. Gravel is angular to svarious lithologies including brick, conc (TOPSOIL) Stiff reddish brown mottled grey slightly Gravel is subangular to rounded fine to slitstone, brick and coal. (MADE GROUND)	subrounded fine to coarse of crete and coal.	0.35	(0.35)	13.86		
1.20 -	87mm	100%	1.00 1.00 1.20	ES ES SPT	N=13		Firm becoming very stiff reddish and or slightly sandy slightly gravelly CLAY. G fine to coarse of mudstone and sandsta (GLACIAL TILL)	ravel is subangular to rounded	0.70		13.51		
2.00	0711111	100 %	1.20 - 1.65 1.20 - 1.65 1.20 - 2.00 1.20 - 2.00	D D B	(2,3,2,3,4,4)			- - - - -		(2.25)			
2.00 - 3.00	77mm	100%	2.00 2.00 - 2.45	SPT D	N=32 (5,5,6,8,8,10)			2 - - -					
			2.50 - 2.95	D SPT	N=35		End of Borehole a	it 2.95m 3 -	2.95		11.26		
			3.00	Gr 1	(5,5,7,9,9,10)			- - - - - - - - - -					
								- - - - - - - -					
								- - - - -					

General Remarks:

1) Hand dug inspection pit from ground level to 1.20m bgl. 2) Dynamic windowless sampling drilling from 1.20m to 2.95m bgl. 3) Refusal of sampling barrel at 2.50m and SPT advanced to 2.95m bgl. 4) No visual or olfactory evidence of contamination. 5) Installed on completion with a response zone from 0.50m to 2.50m bgl.

Borehole No WS104

Page No. 1 of 1

Method: Window Sampler Date(s): 24/08/2021 Logged By: RC Drilled By: DMW Drilling Co-ords: 350676.83, 420952.61 Checked By: RS Client: Ministry of Justice Rig: Dando Terrier

Hydrock Project No: C-19851 Scale: 1:30 Ground Level: 12.48m OD

Hydrod	k Proj	ect No	: C-198	51		Ground	d Level: 12.48m OD		1	3cale	e: 1:	30	
Sam	ple Run	Info		Tes	ting	Water-				ess		ъ	± ភู≣
Sample Run	Run Ø	Recovery	Depth (m)	Туре	Results	Strikes	Stratum Desc	ription	Depth nbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
Trum			0.50 0.50	ES ES			Grass over firm dark brown sandy sligh frequent rootlets. Gravel us subangular (TOPSOIL) Firm dark brownish grey slightly gravel medium to coarse of brick and coal. (MADE GROUND)	otly gravelly CLAY with This is, fine and medium of brick.	0.20	(0.20)	12.28		
								-	0.80		11.68		
							Light brown fine and medium SAND. (HEAD)		0.90	(0.10)	11.58		
							Soft light brownish grey very sandy CL	AY. 1 7	1.00	(0.10)	11.48		
							\(\((\HEAD)\) Soft reddish brown sandy CLAY.						
1.20 - 2.00	87mm	100%	1.20	SPT	N=8 (1,1,2,2,2,2)		(HEAD)	-		(0.40)			
2.00			1.40 -	В	(1,1,2,2,2,2)			-	1.40		11.08		
			1.60	Ь			Firm reddish brown silty CLAY. (HEAD)			(0.20)		××_	
							Firm becoming stiff reddish brown sligh CLAY. Gravel is subangular to rounded and siltstone. (GLACIAL TILL)	itly sandy slightly gravelly fine to coarse of mudstone - -	1.60		10.88	×	
2.00 -	77mm	100%	2.00	SPT	N=10			2 -					
3.00			2.00 - 2.45	D	(2,2,2,3,2,3)								
3.00 - 4.00	67mm	100%	3.00 3.00 - 3.45	SPT D	N=15 (2,2,3,4,4,4)			3- - - -					
4.00 -	57mm	100%	4.00	SPT	N=20					(3.85)			
5.00	3711111	100%	4.00	31 1	(2,3,3,5,6,6)								
			5.00	SPT	N=27 (4,4,6,7,7,7)			- - - 5 -					
								-					
									5.45		7.03		
							End of Borehole a	t 5.45m	J. 4 0		7.03		
								-					
								6 -					
	1		1		1	1	İ.						

General Remarks:

1) Hand dug inspection pit from ground level to 1.20m bgl. 2) Dynamic windowless sampling drilling from 1.20m to 5.45m bgl. 3) No visual or olfactory evidence of contamination. 4) Borehole completed at target depth and installed with response zone from 0.50m to 2.50m bgl.

Borehole No WS105

Page No. 1 of 1

Method: Window Sampler Date(s): 23/08/2021 Logged By: RS Drilled By: DMW Drilling Client: Ministry of Justice Co-ords: 350620.30, 420832.27 Checked By: AC Rig: Dando Terrier Scale: 1:30

Hydrock Project No: C-19851 Ground Level: 12.57m OD

/ Depth (m)	Test	ing Results	Water- Strikes	Stratum Description	pth gl	Thickness (m)	el DD	Legend	-mi ion
Depth (m)	Туре	Results	Strikes	Stratum Description	븅튱	봉		ē	
					를 E	ĮĚΞ	Level m OD	Leg	Instrum- entation
0.30 0.30 - 0.50 0.30	ES ES PID	0.1ppm		Grass over stiff dark brown sandy gravelly desiccated CLAY with occasional rootlets. Gravel is subangular fine of brick and coal. (TOPSOIL) Firm dark brown sandy gravelly CLAY with low cobble content. Gravel is angular to subangular fine to coarse of clinker, sandstone, coal, brick, mudstone and limestone. Cobbles are subangular of limestone. (MADE GROUND)	0.20	(0.20)	12.37		
0.80	D			Firm reddish brown mottled greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine and medium of sandstone and mudstone. (GLACIAL TILL)	-	(0.50)	11.87		
1.20 - 1.65 - 1.65 - 1.20 - 1.65 - 1.30 - 1.80	SPT D D ES D	N=12 (2,2,3,3,3,3)		Stiff reddish brown mottled light grey and orangish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine and medium and mudstone and siltstone. (GLACIAL TILL) From 1.20m bgl: no visible roots or rootlets associated with nearby mature tree.	1.20	(0.80)	11.37		
2.00 - 2.45 2.00 - 2.45 2.00 - 2.45	SPT D	N=22 (3,4,5,5,6,6)		Stiff reddish brown mottled grey slightly sandy CLAY. Gravel is subangular fine of mudstone. (GLACIAL TILL)	2.00		10.57		
2.80 3.00 3.00 - 3.45	D SPT D	N=16 (3,4,4,4,4)			3-				
4.00 4.00 - 4.45	SPT D	N=20 (3,3,4,5,5,6)				(3.45)			
5.00	SPT	N=20 (4,4,4,5,5,6)		End of Borehole at 5.45m	5.45		7.12		
	0.30 - 0.50 0.30 1.20 - 1.65 1.20 - 1.65 1.30 1.80 2.00 - 2.45 2.00 - 2.45 2.01 - 3.45 4.00 4.00 - 4.45	0.30 - 0.50	0.30 - 0.50	0.30 - 0.50	0.30	0.30	0.30	0.30	0.30 ES 0.30

General Remarks:

1) Hand dug inspection pit from ground level to 1.20m bgl. 2) Dynamic windowless sampling drilling from 1.20m to 5.45m bgl. 3) No visual or olfactory evidence of contamination. 4) Backfilled with arisings on completion.

Borehole No WS106

Page No. 1 of 1

Method: Window Sampler Date(s): 24/08/2021 Logged By: RS Drilled By: DMW Drilling Client: Ministry of Justice Co-ords: 350641.19, 420643.97 Checked By: AC Rig: Dando Terrier

_			: C-198			Ground	Level: 11.87m OD				e: 1:	30	
Sample Sample Run	ple Run Run Ø	Info Recovery	Depth (m)	Tes	ting Results	Water- Strikes	Stratum Desc	cription	Depth nbgl	Thickness (m)	Level m OD	Legend	Instrum- entation
			0.30 - 0.50 0.30 0.40 - 0.60 0.60 - 1.00	ES PID B	0.1ppm		Grass over soft dark brown sandy sligh rootlet. (TOPSOIL) Dark brown and orangish brown sandy content. Gravel is angular to subangula slate, sandstone, mudstone and quartz brick. (MADE GROUND)	gravelly CLAY with low cobble ar fine to coarse of coal, brick,	0.15	(0.15)	11.72		
1.20 - 2.00	87mm	100%	1.20 1.20 - 1.65 1.60 -	SPT D	N=9 (2,2,2,2,3)		Loose dark orange sandy slightly claye GRAVEL of coal and clinker. Low cobb (MADE GROUND) Firm reddish brown slightly sandy sligh	le content of subangular brick.	1.30	(0.30)	10.57		
2.00 - 3.00	77mm	60%	2.20 2.00 2.00 - 2.45 2.00 -	SPT D	N=11 (2,3,3,2,3,3)		subangular fine to mudstone and siltsto (HEAD)	one.	-	(0.90)			
			2.45				Medium dense light brown silty fine to (HEAD)	coarse SAND.	2.50		9.37	X X X X X X X X X X X X X X X X X X X	
3.00 - 4.00	67mm	60%	3.00	SPT	N=16 (3,3,4,4,4,4)		Between 3.00m and 3.30m bgl: Basandy slightly gravelly clay.	and of firm reddish brown	-				
4.00 - 5.00	57mm	70%	4.00	SPT	N=14 (3,3,3,3,4,4)		Between 4.00m and 4.45m bgl: Basandy slightly gravelly clay.	4 · and of firm reddish brown	- - - - - -	(2.95)		× × × × × × × × × × × × × × × × × × ×	
			5.00	SPT	N=19 (4,4,4,5,5,5)		End of Borehole a	5 -	5.45		6.42	X X X X X X X X X X X X X X X X X X X	
							сіні от вогенове а	. Coroni	-				

General Remarks:

1) Hand dug inspection pit from ground level to 1.20m bgl. 2) Dynamic windowless sampling drilling from 1.20m to 5.45m bgl. 3) No visual or olfactory evidence of contamination. 4) Backfilled with arisings on completion.

Borehole No WS107

Page No. 1 of 1

Drilled By: DMW Drilling Method: Window Sampler Date(s): 25/08/2021 Logged By: RC Client: Ministry of Justice Co-ords: 350271.17, 420725.53 Checked By: RS Rig: Hand dug

lient: IVI	inisu	y or Ju	ısıice			Co-ords: 350271.17, 420725.53 Checked By: RS		Scale: 1:30					
Hydrock	Proje	ct No	: C-198	51		Ground	round Level: 11.10m OD		5	Scale	ə: 1:	30	
Sample	Run I	nfo		Test	ing	Water-	Stratum Dage	crintion		ness	_ ^	pu	μ̈́ io ∰
Sample Run	Run Ø	Recovery	Depth (m)	Туре	Results	Strikes	Stratum Desc	•	Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
			0.30 0.30	ES ES			Grass over firm dark brown slightly sar rootlets. (TOPSOIL) Firm dark brown slightly sandy slightly rootlets and medium cobble content. G subangular fine to coarse of brick, contare subangular of concrete. (MADE GROUND) End of Borehole a	gravelly CLAY with occasional travel is very angular to crete and limestone. Cobbles	0.35	(0.05)	10.75		
								- 1- - - -					
								- - - - 2-					
								3 -					
								- - - - - 4-					
								5 -					

General Remarks:

1) Hand dug inspection pit from ground level to 0.35m bgl. Pit terminated due to presence of concrete kerb obstruction and very compacted soils 2) Backfilled with arisings. 3) No visual or olfactory evidence of contamination noted.

				Project: Garth Wymott 2		CBR101					
Hydro	ck										
Method: Trial				Date(s): 25/08/2021	Logged By: R				1 of ed By		
Client: Ministi		ce		Co-ords: 350281.79, 420768.60	Stability: Stab				sions		cale:
Hydrock Proje				Ground Level: 10.81m OD	Plant: JCB 3C		0.60	_	1.60m		1:25
	amples / Te		Water-			<u> </u>			ess		 0
Depth (m)	Туре	Results	Strikes					Depth mbgl	Thickn (m)	Level m OD	Legen
S	amples / Te	sts	Water-Strikes	Grass over dark brown gravelly silty fine to coar angular to subangular fine to coarse of coal, lim rare fragments of brick. (TOPSOIL) Dark brown and dark grey sandy ashy angular to limestone, sandstone, brick, coal and clinker. (MADE GROUND) At 0.55m bgl: one piece of laboratory confinations. (HEAD) Base of Excavation Base of Excavation	cription se SAND with rare roo estone, mudstone and o subangular fine to c med hard cement type s subangular fine to m	otlets. Gravel is I quartzite with oarse GRAVEL asbestos (70 x	of .		(0.30) (0.20)	QO E 10.51 10.01	The second of th
							-				

General Remarks:

1) Machine dug trial pit from ground level to 0.80m bgl. 2) LWD test undertaken at 0.80m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

				Project: Garth Wymott 2			CBR102					
Hydro	ock						שי ge N					
Method: Tria	I Pit			Date(s): 25/08/2021	Logged By: R		Che				;	
Client: Minist	ry of Justi	ce		Co-ords: 350266.10, 420899.92	Stability: Stab	le	Dim			: S	cale:	
- Hydrock Proj	ect No: C	-19851		Ground Level: 11.99m OD	Plant: Hand d	ug	0.30m).30m] 1	:25	
S	amples / Te	sts	Water-	Stratum Desc	ription		£		Thickness (m)		pue	
Depth (m)	Туре	Results	Strikes	Grass over dark brown gravelly silty fine to coars		otlets and low	Dei	lgdm	E (E	n Lek	Legend	
				cobble content. Gravel is angular to subangular to coal, sandstone, brick and slag. Cobbles are sub (MADE GROUND) Stiff dark grey slightly sandy slightly gravelly CLA	fine to coarse of mud pangular of sandstone	stone, siltstone, e.		20	(0.20)	11.79		
0.40	CBR	3.8%		subangular fine of mudstone and siltstone. (REW (MADE GROUND)	VORKED NATURAL)		0.	40	(0.20)	11.59		
							-					
							-					
							1 -					
							-					
							-					
							2 -					
							-					
							-					
							3 -					
							-					
							-					
							4 -					
							5 -					

General Remarks:

1) Hand dug trial pit from ground level to 0.40m bgl. 2) LWD test undertaken at 0.40m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

Hydro	ock III			Project: Garth Wymott 2			Trial			}	
					I.		ge N				
Method: Tria				Date(s): 25/08/2021	Logged By: RS		Che				
Client: Minist				Co-ords: 350489.50, 420975.81	Stability: Stabl		Dim		SIONS 1.60m		cale:
Hydrock Proj			ı	Ground Level: 10.75m OD	Plant: JCB 3C	X	0.60m	_		<u>↓</u> [1:25
Depth (m)	Type	Results	Water- Strikes	Stratum Desc			Denth	mbgl	Thickness (m)	Level m OD	Legend
S	amples / Tes	sts			pription own sandy slightly gravium of mudstone and gravelly CLAY with rance.	velly CLAY with siltstone.	O.	lgdm 30	(0.30) Highers		
							4 -				

General Remarks:

1) Machine dug trial pit from ground level to 0.40m bgl. 2) LWD test undertaken at 0.40m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

	, II			Project: Garth Wymott 2			CBR104				
Hydro	ock						ge No.				
Method: Tria	I Pit			Date(s): 25/08/2021	Logged By: R		Check			<u> </u>	
Client: Minist		e		Co-ords: 350650.33, 421021.00	Stability: Stabl		Dimen	sions		cale:	
	ect No: C-	19851		Ground Level: 11.97m OD	Plant: JCB 3C	х	0.60m	1.60m] 1	1:25	
S	amples / Test	ts	Water-	Stratum Desc	crintion	<u>'</u>		Thickness (m)		pu	
Depth (m)	Туре	Results	Strikes	Grass over soft dark brown sandy slightly grave		tlets Gravel is	Dept	Thick	Leve m Of	Legend	
				subangular fine and medium of mudstone and q (TOPSOIL)	uartzite with rare fragi	ments of brick.	0.35	(0.35)	11.62		
0.45	CBR	1.2%		Firm light grey sandy desiccated CLAY. (HEAD) Base of Excavation	at 0.45m		2-	(0.10)	11.52		
							4				
						5 -					

General Remarks:
1) Machine dug trial pit from ground level to 0.45m bgl. 2) LWD test undertaken at 0.45m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

Hydro	Hydrock			Project: Garth Wymott 2		C	rialpi BR	105		
				D. I. () 05/00/0004			ge No.			
Method: Trial					Logged By: R		Check Dimer			cale:
Client: Ministr					Stability: Stabl		_	1.60m		1:25
Hydrock Proje				Ground Level: 13.32m OD	Plant: JCB 3C	X	0.60m	ω		1.23
Depth (m)	amples / Tes	StS Results	Water- Strikes	Stratum Descr	ription		epth	Thickness (m)	Level m OD	Legend
,				Grass over soft dark brown sandy CLAY with occ (TOPSOIL)	asional rootlets.			(0.15)		
0.50	CBR	1.0%		Firm reddish brown mottled grey sandy slightly gr subrounded fine to coarse of mudstone and sand (GLACIAL TILL)	Istone.	is subangular to	0.15	(0.35)	13.17	
0.50	CBR	1.0%		Base of Excavation a	it 0.50m		1		12.82	
							5 -			

General Remarks:

1) Machine dug trial pit from ground level to 0.50m bgl. 2) LWD test undertaken at 0.50m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

	, II			Project: Garth Wymott 2		Trialpit No CBR105A					
Hydro	OCK								1 of		
Method: Tria	l Pit			Date(s): 25/08/2021	Logged By: R				ed B		
Client: Minist	ry of Justi	се		Co-ords: 350721.58, 420932.80	Stability: Stabl	le	Din		sions	s: S	cale:
Hydrock Proj	ect No: C-	-19851		Ground Level: 13.32m OD	Plant: JCB 3C	X	0.60r	n [1:25
Depth (m)	amples / Tes	sts Results	Water- Strikes	Stratum Descri	iption			Depth mbgl	Thickness (m)	Level m OD	Legend
				Grass over soft dark brown sand CLAY with occas (TOPSOIL)	sional rootlets.		-		(0.25)		
				Soft to firm greyish brown and reddish brown sand rootlets. Gravel is subangular fine and medium of (MADE GROUND)	brick and mudstone		-	0.55	(0.30)	13.07	
0.60 0.60	ES ES			Black sandy ashy GRAVEL. Gravel is subangular mudstone. (MADE GROUND) Base of Excavation at		coal, brick and		0.65	(0.15)	12.67	
						-					
							3 -				
							-				
							-				
							4 -				
							-				
			1				5 -				

General Remarks:

1) Machine dug trial pit from ground level to 0.65m bgl. 2) Position moved 1.00m south west due to presence of localised Made Ground. 3) Backfilled with arisings on completion.

Hydrock				Project: Garth Wymott 2		CBR106					
Hyard	CK								1 of		
Method: Tria	l Pit			Date(s): 25/08/2021	Logged By: R				ed B)
Client: Minist	ry of Justi	ce		Co-ords: 350662.55, 420862.28	Stability: Stab	le	Din		sions	s: S	cale:
Hydrock Proj	ect No: C-	-19851		Ground Level: 13.14m OD	Plant: JCB 3C	X	0.60	m		_	1:25
	amples / Tes		Water- Strikes	Stratum Desc	ription			a st	Thickness (m)	el SD	Legend
Depth (m)	Туре	Results	Suikes	Grass over soft dark brown very sandy slightly g	ravelly CLAY with rare	e rootlets. Grav	el	a De	ĒÊ	n Cev	
0.47 0.50	D CBR	1.6%		is subangular to subrounded fine to coarse of mi (TOPSOIL) Firm orangish brown mottled grey sandy slightly fine of mudstone. (GLACIAL TILL) Base of Excavation	gravelly CLAY. Grave			0.45 0.50	(0.45)	12.69 12.64	
							1				
							3				

General Remarks:

1) Machine dug trial pit from ground level to 0.50m bgl. 2) LWD test undertaken at 0.50m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

	, II			Project: Garth Wymott 2			CBR107					
Hydro	OCK						ge No.					
Method: Tria	Pit			Date(s): 25/08/2021	Logged By: R		Check					
Client: Minist	y of Justic	е		Co-ords: 350524.07, 420919.67	Stability: Stab	le	Dimen		s: S	cale:		
Hydrock Proj	ect No: C-	19851		Ground Level: 10.34m OD	Plant: JCB 3C	X	0.60m	1.60m] 1	1:25		
S	amples / Test	s	Water-	Stratum Des	ecrintion	<u>'</u>	ـ ـ	Thickness (m)	-0	pu		
Depth (m)	Туре	Results	Strikes	Grass over soft dark brown sandy slightly grav		tlets Gravel is	Dept	(m)	Leve m Of	Legend		
				subangular to subrounded fine and medium of fragments of brick. (TOPSOIL)	mudstone and quartzite		0.35	(0.35)	9.99			
0.45	CBR	1.9%		Soft light grey mottled orangish brown sandy C (HEAD) Base of Excavation Base of Excavation		0.35	(0.10)	9.89				
							4 -					

General Remarks:
1) Machine dug trial pit from ground level to 0.45m bgl. 2) LWD test undertaken at 0.45m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

				Project: Garth Wymott 2			ı rıaıpıı)	
Hydro	ock						CBR'			
Method: Tria				Deta(a): 25/09/2024	Logged By: R		ge No.			
Client: Minist		00		Date(s): 25/08/2021 Co-ords: 350445.43, 420873.84	Stability: Stab		Check Dimen			cale:
Hydrock Proj				Ground Level: 10.66m OD	Plant: JCB 3C		0.60m	1.60m		1:25
			Motor	Ground Level. 10.00m OD	I lant. JOB 30	·/\	0.00111	sss	_	
Depth (m)	Туре	Results	Strikes	Stratum Desc	cription		Depth	Thickne (m)	Level m OD	Legend
	Type CBR		Water- Strikes	Grass over soft to firm dark brown sandy slightly Gravel is subangular to subrounded fine and me rare fragments of brick. (TOPSOIL) Firm greyish brown sandy CLAY with rare rootle (HEAD) Base of Excavation	y gravelly CLAY with redium of mudstone an	are rootlets. d quartzite with	0.45 0.55	Thickness (m) (0.10)	10.21 10.11	Tegend
							3 -			

General Remarks:

1) Machine dug trial pit from ground level to 0.55m bgl. 2) LWD test undertaken at 0.55m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

Hydro	nck			Project: Garth Wymott 2			CBR109					
							ge N					
Method: Tria				Date(s): 25/08/2021	Logged By: R		Che					
Client: Minist				Co-ords: 350368.19, 420780.36	Stability: Stab		Dime	1.20		Scale:		
Hydrock Proj				Ground Level: 11.46m OD	Plant: JCB 3C	X	0.60m		ᆚ	1:25		
Depth (m)	Type	ts Results	Water- Strikes	Stratum Desc	·		Denth	mbgl Thickness	(m)	Legend		
0.30 0.30 0.30 0.30 - 0.40 0.45	ASB ES ES CBR	5.0%	Ottilics	Firm to stiff dark brown sandy slightly gravelly Croots (up to 10mm) in diameter. Gravel is angul limestone, mudstone, coal and brick. (MADE GROUND) Between 0.20m and 0.35m bgl: occasional hard cement type asbestos (100 x 40mm). Dark brown very gravelly silty fine to coarse SA to coarse of brick, slag, mudstone, limestone, sfragments of plastic. (MADE GROUND) Base of Excavation	ar to subangular fine to occurrence of laborato ND. Gravel is angular andstone and concrete	o coarse of ry confirmed to subangular f	0.:	(0.3	11.	11		
							5 -					

General Remarks:

1) Machine dug trial pit from ground level to 0.45m bgl. 2) LWD test undertaken at 0.45m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

				Project: Garth Wymott 2		CBR110					
Hydro	ock										
Method: Tria				Date(s): 25/08/2021	Logged By: R		ge No Chec			۸.	
Client: Minist				Date(s): 25/08/2021 Co-ords: 350530.61, 420793.42	Stability: Stab		Dime				ale:
								0.3			25
Hydrock Proj	amples / Test			Ground Level: 11.32m OD	Plant: Hand d	ug	0.30m	s	귀	Τ.	
Depth (m)	Type	Results	Water- Strikes	Stratum Des	scription		bepth	mbgl Thickness	(m) Level	8	Legend
,	7.			Grass over soft dark brown sandy CLAY with ra	are rootlets.		0.1		10)	.22	
0.25	CBR	0.8%		Grass over sort dark brown sandy CLAY with re (TOPSOIL) Stiff reddish brown slightly sandy slightly grave cobble content. Gravel is subangular fine of mit mudstone. (HEAD) Base of Excavation	elly CLAY with rare rootl udstone. Cobbles are s	ets and low ubangular of	0.1	(0.1	15)		
General Remark							3				

1) Hand dug trial pit from ground level to 0.25m bgl. 2) LWD test undertaken at 0.25m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

Hydro	ock ⊪			Project: Garth Wymott 2				Trialpit No CBR111					
					. .				1 of				
Method: Trial				Date(s): 25/08/2021	Logged By: R				ed By				
Client: Ministr				Co-ords: 350460.64, 420719.35	Stability: Stab		חוטן		sions _{0.30m}		cale:		
Hydrock Proje	ect No: C	-19851	1	Ground Level: 11.26m OD	Plant: Hand d	ng	0.30n			⅃ L	1:25		
Depth (m)	Type	Results	Water- Strikes	Stratum Des	•		;	Depth mbgl	Thickness (m)	Level m OD	Legend		
0.20 0.20	ES ES			Grass over dark brown gravelly clayey fine to c Gravel is angular to subangular fine to coarse of mudstone. Cobbles are subangular of sandstor (MADE GROUND)	of mudstone, coal, bricl		nd -		(0.35)				
0.50	CBR	3.2%		Firm yellowish brown mottled grey and dark brolow cobble content. Gravel is subangular fine a brick. (REWORKED NATURAL) (MADE GROUND) Base of Excavation	nd medium of mudstor			9.50	(0.15)	10.91			
							4						

General Remarks:

1) Hand dug trial pit from ground level to 0.50m bgl. 2) LWD test undertaken at 0.50m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

Hydrock				Project: Garth Wymott 2 CBR112							
пуагс	CK								1 of		
Method: Tria	l Pit			Date(s): 25/08/2021	Logged By: R	S	Che	ecke	ed By	/: AC	
Client: Minist	ry of Justi	се		Co-ords: 350602.04, 420801.47	Stability: Stab	le	Din		sions	s: S	cale:
Hydrock Proj	ect No: C-	19851		Ground Level: 12.79m OD	Plant: JCB 3C	X	0.60	m		_	1:25
S	amples / Tes	sts	Water-	Stratum Desc	cription			₽-	kness	- Q	pue
Depth (m)	Туре	Results	Strikes			tlets and rare		Dep mpg	E E	n Cek	
			Water- Strikes	Grass over soft dark brown sandy slightly grave roots (up to 5mm) in diameter. Gravel is subang mudstone and quartzite with rare fragments of b (TOPSOIL) Soft to firm reddish brown and dark brown sand Gravel is subangular fine and medium of sandst NATURAL) (MADE GROUND) Base of Excavation	lly CLAY with rare roo ular to subrounded fin rick. y gravelly CLAY with r tone, mudstone and bi	e and medium	of -	ldqu	(0.30) (0.15) (0.15)	12.49 12.34	Tegend Tegend
							- - - - - - 5 –				

General Remarks:

1) Machine dug trial pit from ground level to 0.45m bgl. 2) LWD test undertaken at 0.45m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

Hydrock				Project: Garth Wymott 2 CBR113								
						1	ge N					
Method: Tria				Date(s): 25/08/2021	Logged By: R		Chec					
Client: Minist				Co-ords: 350645.21, 420905.46	Stability: Stab		Dime		ons _{60m}		cale:	
Hydrock Proj			T	Ground Level: 12.80m OD	Plant: JCB 3C	X	0.60m	Ļ] 1	:25	
Depth (m)	Type	sts Results	Water- Strikes	Stratum Des			Depth	mbgl	(m)	m OD	Legend	
0.30 0.30 0.50	ES ES CBR	Results 0.6%	Strikes	Grass over stiff dark brown sandy slightly gravsubangular to subrounded fine and medium of fragments of brick. (TOPSOIL) Firm light grey mottled orangish brown sandy (HEAD) Base of Excavation	elly CLAY with rare roo limestone and mudstor	ne with rare	1 - 0.4 0.5 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	(0	1.45)	12.35 12.30		
							5 -					

General Remarks:

1) Machine dug trial pit from ground level to 0.50m bgl. 2) LWD test undertaken at 0.50m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

				Project: Garth Wymott 2 CBR114							
Hydro	ck										
Method: Tria	Pit			Date(s): 25/08/2021	Logged By: R				1 of ed By		
Client: Minist		ce		Co-ords: 350656.72, 420725.72	Stability: Stab			nen	sions		cale:
Hydrock Proj				Ground Level: 12.63m OD	Plant: Hand d		0.301		0.30m] 1	1:25
	amples / Tes	sts	Water-	Stratum Desc	ription			£ _	Thickness (m)	- o	end
Depth (m)	Туре	Results	Strikes	Soft dark brown sandy slightly gravelly CLAY wit	h rare rootlets. Grave	l is subangular		Dep		n Cev	Ē
			Strikes		h rare rootlets. Grave e fragments or brick. sandy slightly gravelly			Equil	(0.15) (0.15)	12.48	pueden
							4				

General Remarks:

1) Hand dug trial pit from ground level to 0.30m bgl. 2) LWD test undertaken at 0.30m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

Hydro	ck			Project: Garth Wymott 2 CBR115			,				
riyurc	CK					Pa	ge	No.	1 of	1	
Method: Tria	Pit			Date(s): 24/08/2021	Logged By: R	S	Che	ecke	ed By	y: A0)
Client: Minist	y of Justi	се		Co-ords: 350672.11, 420688.00	Stability: Stab	le	Din		sions _{2.00m}	s: S	cale:
Hydrock Proj	ect No: C	-19851		Ground Level: 12.17m OD	Plant: JCB 3C	X	0.60] (1:25
S	amples / Tes	sts	Water-	Stratum Des	cription			÷-	Thickness (m)	- □	end
Depth (m)	Туре	Results	Strikes	Grass over soft dark brown sandy slightly grave	·	nal rootlets.		Depth mbgl		Level m OD	Legend
0.35	ES			Gravel is subangular to subrounded fine to coal (TOPSOIL) Soft to firm dark brown and black sandy slightly is angular to subangular fine to coarse of mudst (MADE GROUND)	rse of coal, sandstone gravelly CLAY with ra tone, coal, brick and cl	and mudstone. re rootlets. Grav narcoal.	/el	0.15	(0.15)	12.02	
0.70	ES	2.2%		(MADE GROUND) At 0.50m bgl: Bedding gravel on west side service. Firm to stiff reddish brown mottled grey slightly rootlets. Gravel is subangular to subrounded fin siltstone. (GLACIAL TILL) Base of Excavation	sandy slightly gravelly ne and medium of mud	CLAY with rare	_/-	0.55	(0.40)	11.62	
							5 —				

General Remarks:
1) Machine dug trial pit from ground level to 0.70m bgl. 2) LWD test undertaken at 0.70m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

Hydrock				Project: Garth Wymott 2 CBR116						
Hydro	ock						ge No			
Method: Tria				Date(s): 24/08/2021	Logged By: R		ge ivo Check			
Client: Minist		ce		Co-ords: 350747.83, 420683.68	Stability: Stab		Dime			cale:
Hydrock Pro	-			Ground Level: 12.90m OD	Plant: JCB 3C		0.60m	1.40m		1:25
	Samples / Tes		Water-	Charles Dec				ness		P
Depth (m)	Туре	Results	Strikes	Stratum Des		N. A.V''I	Depth	Thickness (m)	Level m OD	Legend
0.15	ES			Grass over firm to stiff dark brown sandy slight rootlets. Gravel is subangular fine to coarse of fragments of brick. (TOPSOIL)	mudstone and quartzit	e with rare	0.25	(0.25)	12.65	
				Very stiff reddish brown mottled grey slightly sa subangular fine and medium of mudstone. (GLACIAL TILL)	andy slightly gravelly Cl	LAY. Gravei is		(0.25)		
0.50	CBR	2.0%		Base of Excavation	on at 0.50m		0.50		12.40	
							-			
							1 -			
							-			
							2 -			
]			
							1			
							3 -			
							-			
							-			
							4 -			

General Remarks:

1) Machine dug trial pit from ground level to 0.50m bgl. 2) LWD test undertaken at 0.50m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

Hvdro	lydrock			Project: Garth Wymott 2			Trialpit No CBR117 Page No. 1 of 1					
Method: Tria				· · ·	Logged By: R		Che					
Client: Ministi					Stability: Stabl		Dim		1.70m		cale:	
Hydrock Proje	∍ct No: C-	-19851		Ground Level: 12.52m OD	Plant: JCB 3C	X	0.60m			⊿	1:25	
	amples / Tes		Water-	Stratum Descr	ription		ŧ	-	ckness	oc OD	end	
0.60	Type CBR	Results 1.8%	Water- Strikes	Grass over firm to stiff dark brown sandy slightly. Gravel is subangular to subrounded fine to coars mudstone with rare fragments of brick. (TOPSOIL) Stiff reddish brown mottled grey slightly sandy slissubangular fine and medium of mudstone and sit (GLACIAL TILL) Base of Excavation a	gravelly CLAY with ra e of limestone, sands ghtly gravelly CLAY.	stone and	- - 0.	35	(0.35) (0.25)	OO 12.17 11.92	pueden	
		<u> </u>					5 -					

General Remarks:

1) Machine dug trial pit from ground level to 0.60m bgl. 2) LWD test undertaken at 0.60m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

Hydro	ock ⊪			Project: Garth Wymott 2				CBR118					
				D 4 4 2 2 4 2 5 5 5			ge No						
Method: Tria				Date(s): 24/08/2021	Logged By: R		Check						
Client: Minist				Co-ords: 350773.06, 420619.00	Stability: Stab		Dimer	1.50m		cale:			
Hydrock Proj			T	Ground Level: 13.02m OD	Plant: JCB 3C	X	0.60m	Ι	Ш.	1:25			
Depth (m)	Type	Results	Water- Strikes	Stratum Des			Depth	Thickness (m)	Level m OD	Legend			
0.10 0.10	ES ES			Grass over black becoming reddish brown slight subangular fine to coarse of sandstone, coal ar (MADE GROUND)	nd limestone.		0.20	(0.20)	12.82				
0.40	CBR	2.3%		Firm reddish brown mottled grey slightly sandy subangular to subrounded medium to coarse of (GLACIAL TILL) Base of Excavation	f mudstone and siltstor	Gravel is ne.	1 -	(0.20)	12.62				
							2 -						
							4-						

General Remarks:

1) Machine dug trial pit from ground level to 0.40m bgl. 2) LWD test undertaken at 0.40m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

Hydro	ock			Project: Garth Wymott 2 CBR119						
							ge No			
Method: Tria				Date(s): 24/08/2021	Logged By: R		Check			
Client: Minist				Co-ords: 350696.62, 420555.12	Stability: Stab		Dimer	1.70m		cale:
Hydrock Proj			T	Ground Level: 11.71m OD	Plant: JCB 3C	X	0.60m		<u> </u>	1:25
Depth (m)	amples / Tes	Results	Water- Strikes	Stratum Des	•		Depth	Thickness (m)	Level m OD	Legend
				Grass over soft dark brown sandy slightly grave angular to subangular fine to coarse of sandstowith rare fragments of brick and slate. (TOPSOIL)	one, mudstone, limesto	ne and quartzite		(0.40)	11.31	
0.50	ES			Firm greyish brown sandy slightly gravelly CLA angular to subangular fine to coarse of brick, si Cobbles are subangular of brick.			0.60	(0.20)	11.11	
0.65 0.70	D CBR	2.1%		Cobbles are subangular of brick. (MADE GROUND) Stiff dark brown mottled yellowish brown sandy subangular to subrounded fine and medium of NATURAL) (MADE GROUND) Base of Excavatio	r slightly gravelly CLAY. mudstone and siltstone	Gravel is	0.60	(0.10)	11.11	
							4 -			

General Remarks:

1) Machine dug trial pit from ground level to 0.70m bgl. 2) LWD test undertaken at 0.70m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

				Project: Garth Wymott 2		CBR120				
Hydro	ck									
					1.		ge No.			
Method: Trial				Date(s): 24/08/2021	Logged By: RS Stability: Sligh		Check			
Client: Ministr				Co-ords: 350775.06, 420578.26	unstable	-	Dimer	1.20m		cale:
Hydrock Proje			T	Ground Level: 12.69m OD	Plant: JCB 3C	X	0.60m] [1	1:25
	amples / Test		Water-	Stratum Desc	cription		동급	ckness	D e	bue
Depth (m)	Туре	Results	Strikes	Grass over dark brown gravelly fine to coarse S	SAND with rare rootlets	. Gravel is	2 5		a Fe	, je
0.40 0.45	D CBR	Results 1.9%	Strikes		SAND with rare rootlets ne and coal with rare fr ar to subangular fine to ngish brown slightly sa to coarse of mudstone	agments of coarse GRAVE	1 - 0.35 0.45	(m) (0.15) (0.20) (0.10)	00 E 12.54 12.34 12.24	Legend 1.1.
General Remark	a.						5 -			

1) Machine dug trial pit from ground level to 0.45m bgl. 2) LWD test undertaken at 0.45m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

				r roject. Garar vvymoti z		BR121				
Hydro	ock							\ 		
Method: Tria	l Pit			Date(s): 25/08/2021	Logged By: R			cked		
Client: Minist		ce		Co-ords: 350382.08, 420645.77	Stability: Stab			ensio	ns: S	cale:
Hydrock Proj				Ground Level: 10.59m OD	Plant: Hand de		0.30m	0.30	m .	1:25
	amples / Te		Water-	Ctratum Doo				Ssau	T	рu
Depth (m)	Туре	Results	Strikes			atlete Crevelie	200	Thick and	Level m OC	Legel
				Grass over dark brown very sandy slightly grav subangular fine to coarse of coal, mudstone, bit (MADE GROUND) Firm greyish brown sandy slightly gravelly CLA of mudstone, siltstone and brick. (MADE GROUND) Base of Excavatio	relly CLAY with rare roo rick, concrete and sand Y. Gravel is subangula	Istone.	0.	16 25 (0.1)	10.44	
							5 -			

General Remarks:

1) Hand dug trial pit from ground level to 0.25m bgl. 2) LWD test undertaken at 0.25m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

Page No. 1 of 1 Method: Trial Pit Date(s): 25/08/2021 Logged By: RS Checked By: AC Client: Ministry of Justice Co-ords: 350346.78, 420361.92 Stability: Stable Dimensions: Scale:					Project: Garth Wymott 2 CBR122							
Method: Trial Pit Date(s): 25/08/2021 Logged By: RS Checked By: AC	Hydro)CK										
Client: Ministry of Justice Co-ords: 350346.78, 420361.92 Sampler, / Tests Simpler / Tests Simpler / Tests Simpler / Tests Onch (re) Tyre Results Oliented in amplitude of the control of the transmission and dark brown very sample are exhausted in the control of the con	Method: Tria	I Pit			Date(s): 25/08/2021	Logged By: R						
Sumples / Tools Water Stutker			ce						nen	sions		
Grass over add task brown very samely gravely for with order codels and comment of code and code order of code order o	Hydrock Proj	ect No: C	-19851		Ground Level: 10.79m OD	Plant: Hand d	ug	0.30		0.30m] 1	1:25
Grass over add task brown very samely gravely for with order codels and comment of code and code order of code order o	S	amples / Te	sts		Stratum Desc	rintion			£_	kness		pue
Content. Careel is angular bus basequal feet to conserve do call, bring bus an advantage with mer plants. Cabbles are submunded of muladerne and quantities. Firm caregine brown and risk from a sandy gravelly CLAY Gravel is submunder feet to content to	Depth (m)	Туре	Results	Strikes			s and low cobb	le	Dept	E E	Leve n O	
CSR 1.7% resident of cost, must store and brick. (MADE GROUND) to see of Escentition of 3 from					content. Gravel is angular to subangular fine to c sandstone with rare plastic. Cobbles are subrour (MADE GROUND) Firm orangish brown and dark brown sandy grav	coarse of coal, brick, I nded of mudstone and	imestone and d quartzite.					
	0.35	CBR	1.7%		medium of coal, mudstone and brick.				0.35		10.44	******
								-				
								1 -				
								2 -				
								3 -				
								-				
								4 -				

General Remarks:

1) Hand dug trial pit from ground level to 0.35m bgl. 2) LWD test undertaken at 0.35m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

Hydrock P				Project: Garth Wymott 2) -		iria :RI		1NO 23		
Hydro	ock								1 of		
Method: Tria	l Pit			Date(s): 25/08/2021	Logged By: R				ed By		<u> </u>
Client: Minist		ice		Co-ords: 350275.24, 420165.83	Stability: Stab			ens	sions		cale:
- Hydrock Proj				Ground Level: 13.50m OD	Plant: Hand d		0.30r		0.30m	7 1	1:25
	samples / Te		Water-	Ctratum Da					ness		pu
Depth (m)	Туре	Results	Strikes	Stratum Des		tlata Craval ia		Depti	Thickness (m)	Level m OC	Legend
				Grass over firm dark brown sandy slightly grav subangular fine of mudstone and siltstone with (TOPSOIL)	rare fragments of brick	and rare plasti		0.20	(0.20)	13.30	
0.25	CDD	4.70/		Stiff reddish brown mottled grey slightly sandy subangular fine and medium of mudstone and	slightly gravelly CLAY. siltstone.	Gravel is		0.35	(0.15)	13.15	*****
0.35	CBR	1.7%		(GLACIAL TILL) Base of Excavation	on at 0.35m		/				
							-				
							-				
							-				
							1 -				
							-				
							-				
]				
							2 -				
							-				
							3 -				
							-				
							-				
							-				
							-				
							-				
							4 -				
]				
]				
							5 -				

General Remarks:

1) Hand dug trial pit from ground level to 0.35m bgl. 2) LWD test undertaken at 0.35m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

Hydro	nck			i rojoot. Odrai vvymot z					BR124			
Method: Tria				Date(s): 25/08/2021	Logged By: R		Che					
Client: Minist	ry of Justi	ce		Co-ords: 350335.32, 420148.64	Stability: Stab	le	Dime		sion: _{0.30m}		cale:	
Hydrock Proj				Ground Level: 12.57m OD	Plant: Hand d	ug	0.30m	_		_	1:25	
Depth (m)	Type	Results	Water- Strikes	Stratum Des			Depth	mbgl	Thickness (m)	Level m OD	Legend	
				Grass over stiff dark brown and greyish brown rootlets. Gravel is subangular to subrounded fit quartzite and coal with rare fragments of brick (TOPSOIL) Stiff orangish brown mottled grey slightly sandy Gravel is subangular fine of mudstone. (GLACIAL TILL) Base of Excavatic	sandy slightly gravelly ne to coarse of mudsto and clinker. y slightly gravelly CLAY	ne, sandstone,	- 0.:		(0.30) (1) Thickness		pueßerl	
							4 -					

General Remarks:

1) Hand dug trial pit from ground level to 0.35m bgl. 2) LWD test undertaken at 0.35m bgl to obtain a CBR value. 3) Backfilled with arisings on completion.

Hydro	ck						CT			
ilyard	CIN						ge No			
Method: Han				Date(s): 27/08/2021	Logged By: Ro		Chec			
Client: Ministr				Co-ords: 350323.82, 420201.98	Stability:		Dime	nsion 0.30m		cale:
Hydrock Proje			T		Plant: Hand du	ng	0.30m			1:10
			Water- Strikes	Stratum Des	cription		pth	ogl ickness)	oD	gend
Depth (m) 0.25	Type ES	Results	Water- Strikes	Grass over soft dark brown slightly sandy slight Gravel Is angular to subrounded fine to coarse coal and limestone with rare fragments of cerar (MADE GROUND) Base of Excavation	tly gravelly CLAY with f of various lithologies ir mic and glass.	requent rootlets	- Updag	Ssenyold (a)	m OD m	Pegend
Congral Romark							2 -			

General Remarks: 1. Shallow hand dug pit within the contamination testing zone. 2. Complete at 0.30m bgl. 3. Backfilled with arisings on completion.

Method: Hand-dug Pit Dale(s): 27/08/2021 Logged By: RC Checked By: RS Dimensions. Scale: Client: Ministry of Justice Co-ords: 350312.49, 420190.59 Stability: Dimensions. Scale: Own Checked By: RS Dimensions. Scale: Own Che	Hydrock Project: Garth Wymott 2						Trialp				
Method: Hand-dug Pit Client: Ministry of Justice Co-ords: 350312.49, 420190.59 Stability: Plant: Hand dug Co-ords: 350312.49, 420190.59 Plant: Hand dug Co-ords: 350312.49, 420190.59 Stability: Plant: Hand dug Co-ords: 350312.49, 420190.59 Plant: Hand dug Co-ords: 350312.49, 420190.59 Stability: Plant: Hand dug Co-ords: 350312.49, 420190.59 Stability: Plant: Hand dug Co-ords: 350312.49, 420190.59 Plant: Hand dug Co-ords: 350312.49 Plant: Han	Hydro	ock			Date(s): 27/08/2021 Logged By: RC					· 1	
Hydrock Project No: C-19851 Semples / Tosks Death in tope Nesuta Water-Strike Stratum Description Semples / Tosks Stratum Description Stratum Description Semples / Tosks Semples / Tosk	Method: Har	nd-dug Pit			Date(s): 27/08/2021	Logged By: R					S
Sumplex / Tests	Client: Minist	ry of Justice	e		Co-ords: 350312.49, 420190.59	Stability:		Dime		- 1	cale:
Class over shift dark from slightly sarry slightly gravely CLAY will frequent codes. Grave the simples of the control form the class of values thickness in class of values. (IANGE GROUND) Stiff redusin stores modified gray slightly sarry slightly gravelty CLAY. Clavel is singular to the control of the class of th	Hydrock Proj	ect No: C-1	9851			Plant: Hand de	ug				1:10
Class over shift dark from slightly sarry slightly gravely CLAY will frequent codes. Grave the simples of the control form the class of values thickness in class of values. (IANGE GROUND) Stiff redusin stores modified gray slightly sarry slightly gravelty CLAY. Clavel is singular to the control of the class of th				_	Stratum Desc	cription		tt.	ckness	el OD	end
coal and inferestore with rare fragments of plastic. (MADE GROUND) 10 September 1 Septem	Depth (m)	Туре	Results	Strikes				s.	ĒĒ	n Ce	Lee Lee
to surrounded fine and medium of inudatore, sandstore, brick and coal. (MADE CROUND) Day Bear of brossettorial 0.20m					coal and limestone with rare fragments of plasti (MADE GROUND)	c.	-	0.10 ar			
Seneral Remarks:					to surrounded fine and medium of mudstone, sa	andstone, brick and co	al.		(0.15)		
Seneral Remarks:	0.25	ES			Base of Excavation	at 0.25m		0.25	;		
General Remarks:											
Carallow pand dud bit within the contamination testing zone 12. Complete at 0.25m bd. 3. Rackfilled with crisings on completion	General Remark	(S:	the contamina	ution testing	zone 2 Complete at 0.25m hal 2 Pacifillas	with arisings on a	ompletion	-		<u> </u>	

				Project: Garth Wymott 2			riaipi			
Hydro	ock			Date(s): 27/08/2021						
				- / / > 07/00/0004	,					
Method: Har				Date(s): 27/08/2021	Logged By: R			ked B		S cale:
Client: Minist				Co-ords: 350303.16, 420175.76	Stability:			0.30m		1:10
Hydrock Proj					Plant: Hand de	ng	0.30m	Τø	_	
Depth (m)	amples / Tes	sts Results	Water- Strikes	Stratum Des	cription		epth	Thickness (m)	op	Legend
Deptii (iii)	Туре	results	1	Grass over firm dark brown slightly sandy sligh			١٥	: FE	3 6	_ <u>_</u>
0.10	ES			subrounded fine and medium of mudstone, sar (MADE GROUND)	idstone, brick and coal	•	_	(0.20)		
				Base of Excavation	o at 0.20m		0.20			
				Base of Excavation	n at u.20m					
							-			
							-			
							_			
							-			
							_			
							-			
							1 -			
							-			
							-			
							-			
							-			
							2 -			
General Remark 1. Shallow hand	s: dug pit withi	in the contamina	tion testing:	zone. 2. Complete at 0.20m bgl. 3. Backfille	d with arisings on co	ompletion.				

Hydro	ck			Project: Garth Wymott 2			rialpi SA1			
iyuic	CN						ge No	. 1 of	1	
Method: Trial	Pit			Date(s): 27/08/2021	Logged By: R		Check			
Client: Ministr	y of Justi	ce		Co-ords: 350312.12, 420746.87	Stability: Stab	le	Dimer	nsion 2.30m		cale:
Hydrock Proje	ect No: C	-19851		Ground Level: 10.58m OD	Plant: JCB 3C	X	0.60m			1:25
Sa Depth (m)	Type	sts Results	Water- Strikes	Stratum Des	cription		Depth	Thickness (m)	Level m OD	Legend
0.30 - 0.40 0.35	ES ASB HSV	38kPa		Grass over dark brown very gravelly clayey find low cobble content. Gravel is angular to subant mudstone, sandstone and siltstone. (MADE GROUND) At 0.35m bgl: one piece of suspected hard no asbestos detected by lab. Soft dark grey sandy slightly gravelly CLAY with to medium of mudstone and coal. (MADE GROUND) At 0.75m bgl: Redundant land drain broke within drain. Firm becoming stiff orangish brown mottled green.	gular fine to coarse of but the second secon	orick, coal, (70 x 30mm), s subangular fin	0.40	(0.40)	10.18	1
0.90 0.90 1.20	D HSV HSV	39kPa 88kPa		subangular fine and medium of mudstone and (HEAD)		ry CLAY. Graver	1 -	(1.00)		
1.50 - 1.80 1.50	B HSV	114kPa					- 1.80		8.78	
							2			

General Remarks:

1) Machine dug trial pit from ground level to 1.80m bgl. 2) Soakaway test undertaken between 0.77m and 1.80m bgl. 3) Soakaway test undertaken below land drain to avoid infilitration to existing drainage. 4) Hole backfilled with gravel and soakaway test run.

م ما الميل	الم			Project: Garth Wymott 2					02		
Hydro	CK								1 of	1	
Method: Tria	l Pit			Date(s): 26/08/2021	Logged By: R	S			ed B		5
Client: Minist	ry of Justi	се		Co-ords: 350439.76, 420825.24	Stability: Stab	le	Dir		sion:	s: S	cale:
Hydrock Proj	ect No: C	-19851		Ground Level: 10.52m OD	Plant: JCB 3C	X	0.60)m		_	1:25
	amples / Te		Water- Strikes	Stratum Des	scription			al th	Thickness (m)	el O	Legend
Depth (m)	Туре	Results	Strikes	Soft to firm dark brown sandy slightly gravelly				Deg	Thi (m)	Lev m	
				subangular fine to coarse of mudstone and silt (TOPSOIL)	stone with rare fragme	nts of brick.		0.35	(0.35)	10.17	
0.60 0.60	D HSV	71kPa		Firm to stiff orangish brown mottled grey sand Gravel is subangular to subrounded fine to cos siltstone. (HEAD)	y slightly gravelly CLAY arse of sandstone, mud	with rare rootle stone and	ets.	-			
1.20 - 1.50	В						1 -	-	(1.30)		
1.20	HSV	103kPa		Base of Excavati				1.65		8.87	
							2 -	-			
							3 -	-			
							4 -	-			

General Remarks:

1) Machine dug trial pit from ground level to 1.65m bgl. 2) Soakaway test undertaken between 0.20m and 1.65m bgl. 3) Hole backfilled with gravel and soakaway test run.

Hydrock				Project: Garth Wymott 2					νο 2Α		
Hydro	ck										
Method: Trial				Date(s): 26/08/2021	Logged By: R				1 of ed By		\exists
Client: Ministr		ce			Stability: Stab			nens	sions		cale:
Hydrock Proje					Plant: JCB 3C		0.60		2.00m] 1	1:25
	amples / Tes		Water-	Stratum Decor	intion				kness		p _L
Depth (m)	Туре	Results	Strikes			tlete Gravel is	_	Deptimpgl	E)	Level m OF	Lege
				Grass over soft dark brown sandy slightly gravelly subangular to subrounded fine to coarse of muds (TOPSOIL) Stiff orangish brown mottled light grey sandy sligt content and occasional lenses of light brown sitty subrounded fine to coarse of mudstone and sand sandstone. (REWORKED NATURAL) (MADE GROUND) Base of Excavation a	y CLAY with rare root tone and quartzite. htty gravelly CLAY wi sand. Gravel is sub- stone. Cobbles are s	th low cobble	- - -	0.30	(0.40)	OO E 10.19 9.79	Tegend Tegend
							5				

General Remarks:
1) Machine dug trial pit from ground level to 0.70m bgl. 2) Land drain encountered at 0.70m bgl. 3) Hole terminated and backfilled with arisings.

Hydrock SA Page N					rialpi SA1					
nyurc	CK								1	
Method: Trial	Pit			Date(s): 26/08/2021	Logged By: R	S	Check	ed B	y: A(С
Client: Ministi	y of Justic	e		Co-ords: 350538.23, 420826.71	Stability: Stab	le	Dimer	nsion _{2.00m}		cale:
Hydrock Proje	ect No: C-	19851		Ground Level: 10.99m OD	Plant: JCB 3C	X	0.60m			1:25
Depth (m)	amples / Test	Results	Water- Strikes	Stratum Des	scription		Depth	Thickness (m)	Level m OD	Legend
				Grass over soft dark brown sandy slightly grav Gravel is subangular fine and medium of muds brick. (TOPSOIL) Firm light grey sandy slightly gravelly CLAY wit to coarse of mudstone and siltstone. (HEAD)	stone and siltstone with	rare fragments	of -	(0.40)	10.59	
0.60 0.65	HSV D	62kPa		Firm to stiff orangish brown mottled grey sand subangular fine and medium of siltstone and m		Gravel is	0.90	(0.50)	10.09	
1.20 - 1.50 1.20	B HSV	96kPa		Base of Excavation	on at 1.50m		1.50	(0.60)	9.49	
				Base of Excavation at 1.50m						
							3			

General Remarks:

1) Machine dug trial pit from ground level to 1.50m bgl. 2) Soakaway test undertaken between 0.47m and 1.50m bgl. 3) Test run for 7 hours and trial pit backfilled with arisings on completion following no infiltration.

-lydrock				Project: Garth Wymott 2			Trialpit			
Hydro	ck					,	SA1	04		
iyarc	CK					Pa	ge No.	1 of	1	
lethod: Trial	l Pit			Date(s): 24/08/2021	Logged By: R	S	Check			
lient: Minist	ry of Justi	ce		Co-ords: 350755.77, 420551.30	Stability: Stab	le	Dimen	sion 2.00m	s: S	cale:
lydrock Proje	ect No: C	-19851		Ground Level: 12.54m OD	Plant: JCB 3C	X	0.60m			1:25
S	amples / Te	sts	Water-	Stratum Descr	ription		를 를	Thickness (m)	e Q	Legend
Depth (m)	Туре	Results	Strikes	Grass over soft dark brown sandy slightly gravell		tlets . Gravel is	Depth	iĘ Œ	Level m OD	
0.20 0.20	ES ES			angular to subangular fine to coarse of brick, coal imestone. (MADE GROUND)			-	(0.35)		
				Red grey gravelly fine to coarse SAND. Gravel is of sandstone.	angular to subangul	ar fine to coarse	0.35	(0.10)	12.19	
0.50	ES			\(\((\)(MADE GROUND)\) Black sandy ashy angular to subangular fine to c	oarse GRAVEL of lim	nestone and	0.60	(0.15)	11.94	
0.65	ES			ballast. (MADE GROUND)	inhah	Oli-	_/			
1.00	D			Stiff reddish brown mottled grey slightly sandy sli subangular to subrounded fine to coarse of muds (GLACIAL TILL)	Gravei is					
1.00	D					']	(1.00)			
1.20 - 1.60 1.20 - 1.60	B B					_				
1.30	HSV	116kPa]				
						1.60		10.94		
				Base of Excavation a	at 1.60m		-			
							-			
							2 -			
							-			
							1			
							-			
							1			
							_			
							3 -			
							1			
							_			
							-			
]			
							-			
]			
							4 -			
]			
							-			
							1			
							-			
							-			

General Remarks:

1) Machine dug trial pit from ground level to 1.60m bgl. 2) Soakaway test undertaken between 0.60m and 1.60m bgl. 3) Test run for 4 hours and trial pit backfilled with arisings on completion following no infiltration.

	. III			i roject. Cartii vvymoti z			riaip SA1			
Hydrock Method: Trial Pit Client: Ministry of Justice										
Method: Trial	Pit			Date(s): 27/08/2021 Logged By: RS Co-ords: 350347.53, 420332.73 Stability: Stable Ground Level: 11.01m OD Plant: JCB 3CX					ы Ву: А(
		ce					Dime			cale:
- Hydrock Proje	-						0.60m	2.00m		1:25
	imples / Tes		Water-					ssau		p p
Depth (m)	Туре	Results	Strikes	Stratum Descr			Depth	Thickness (m)	Level m OD	Legend
				Grass over soft dark brown sandy CLAY with rare (TOPSOIL)			0.15	(0.15)	10.86	
0.30 - 0.50	ES			Soft to firm dark brown and greyish brown sandy boulder content. Gravel is angular to subangular mudstone, slate, sandstone and quartzite with ran polystyrene. Cobbles and boulders are subangular (MADE GROUND)	fine to coarse of brick re fragments of plasti	k, concrete, coal	, 1.00	(0.85)	10.01	
				Light grey angular to subangular fine to coarse G (MADE GROUND)	RAVEL of limestone.		1 1.00	(0.20)		
				Base of Excavation a	at 1.20m		1.20		9.81	
				3						

General Remarks:

1) Machine dug trial pit from ground level to 1.20m bgl. 2) Suspected bedding gravel encountered at 1.20m bgl. 3) Hole terminated and backfilled with arisings.

				S S		rialpi				
Hydro	ck						A10			
Method: Trial				Date(s): 27/08/2021	Logged By: R		ge No Check			
Client: Ministr		00			Stability: Stabl		Dime			cale:
					Plant: JCB 3C		0.60m	2.00m		1:25
Hydrock Proje	amples / Tes			Ground Level. 11.0 mil OD	Piani. JCD 3C	^	L	ss	_ _	
Depth (m)	Туре	Results	Water- Strikes	Stratum Descr	iption		Depth	Thickness (m)	Level m OD	Legend
				Grass over soft dark brown sandy CLAY with rare (TOPSOIL)	e rootlets.			(0.15)		
				Soft to firm dark brown sandy gravelly CLAY with to subangular fine to coarse of brick, limestone, c and quartzite with rare fragments of plastic and til (MADE GROUND)	oncrete, coal, mudst	one, sandstone	k	(0.75)	10.86	
				Soft to firm light grey sandy CLAY. (MADE GROUND)			0.90		10.11	
1.20	HSV	44kPa					1.50	(0.60)	9.51	
				Base of Excavation a	1.50m		3-			

General Remarks:
1) Machine dug trial pit from ground level to 1.50m bgl. 2) Land drain encountered at 1.50m bgl. 3) Hole terminated and backfilled with arisings.

leading als				Project: Garth Wymott 2	Trialpit No SA106					
Hydro	CK								1	
/lethod: Trial	l Pit			Date(s): 27/08/2021	Page No. 1 of 1 Checked By: AC					
Client: Ministi	ry of Justi	ce		Co-ords: 350241.71, 420196.14	Stability: Stab	le	Dimen		s: S	cale:
lydrock Proje	ect No: C	-19851		Ground Level: 13.85m OD	Plant: JCB 3C	X	0.60m	1.50m		1:25
S	amples / Te	sts	Water-	Stratum Des	crintion	'	ے_	Thickness (m)	-0	pu
Depth (m)	Туре	Results	Strikes	Grass over soft dark brown sandy slightly grave	•	nal rootlota	Dept	(m)	Level m OD	Legend
0.20	ES			Gravel is subangular to subrounded fine and m fragments of brick and rare plastic. (TOPSOIL)	edium of coal and mud	Istone with rare	0.30	(0.30)	13.55	
				Firm reddish brown and light brown slightly san subangular to subrounded fine to coarse of much			-			
0.50	ES			(MADE GROUND)			-	(0.35)		
0.60	D			Stiff reddish brown mottled grey slightly sandy s	slightly gravelly CLAY.	Gravel is	0.65		13.20	
0.80	HSV	89kPa		subangular to subrounded fine to coarse of muc (GLACIAL TILL)	dstone and siltstone.		-			
							1 -			
							-	(0.85)		
1.20 - 1.50 1.20 - 1.50	B B	00kD-								
1.30	HSV	92kPa					-			
				Base of Excavation	n at 1.50m		1.50		12.35	· ;
							-			
							1			
							2 -			
]			
							-			
]			
							-			
							3 -			
							-			
							-			
							-			
]			
							4 -			
							-			
							1			
]			
							-			
							1			

General Remarks:

1) Machine dug trial pit from ground level to 1.50m bgl. 2) Soakaway test undertaken between 0.50m and 1.50m bgl. 3) Test run for 6 hours and trial pit backfilled with arisings on completion following no infiltration.

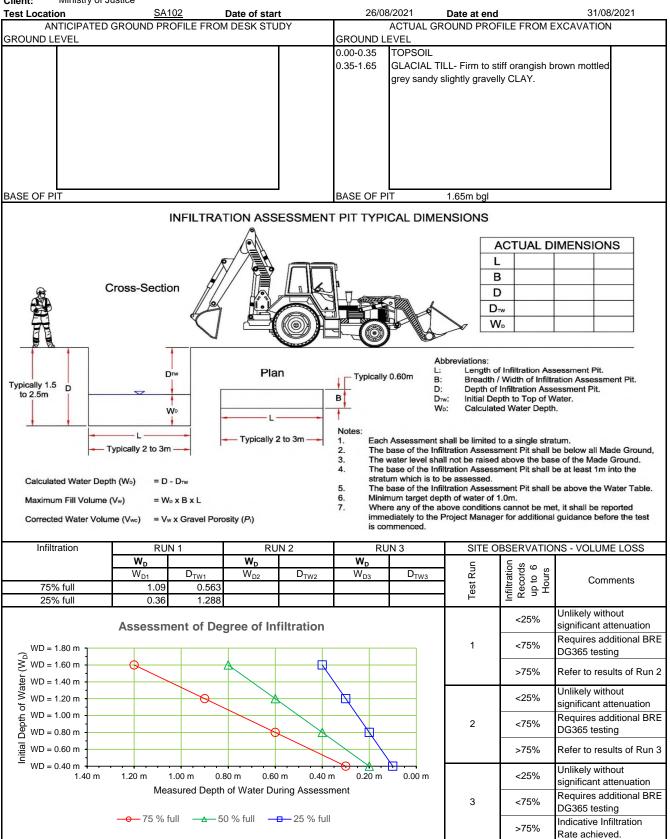


Soakaway Datasheets

1 DAY INFILTRATION ASSESSMENT - AIDE MEMOIR

Site: Garth Wymott 2
Client: Ministry of Justice

1 DAY INFILTRATION ASSESSMENT - WORKSHEET

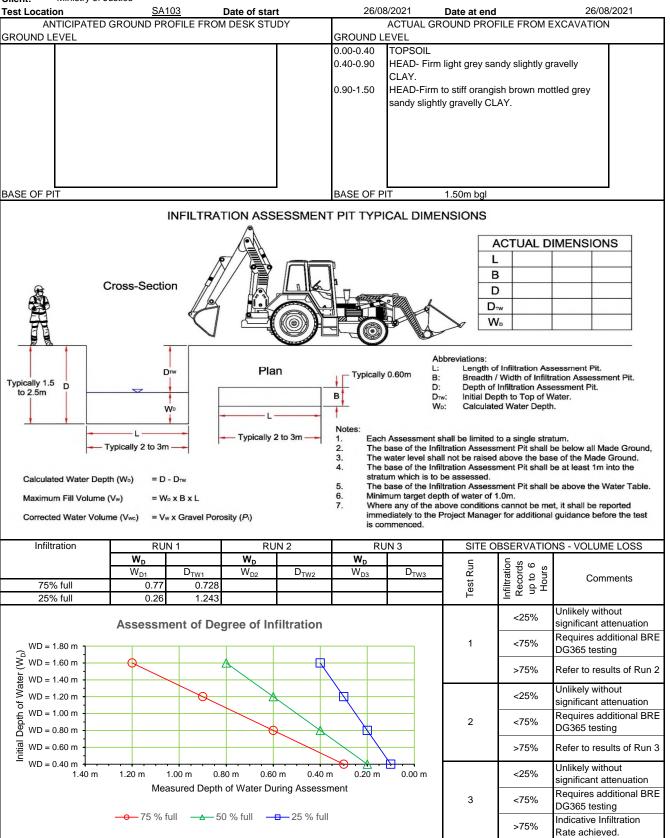

Site: Garth Wymott 2
Client: Pick Everard

Test Location	on	SA	<u>101</u>	Date of star	t	27/08	3/2021	Date at end		31/08	/2021	
	Test	Run 1			Test	Run 2			Test	Run 3		
	Pit Dimen	sions (m)			Pit Dime	nsions (m)		Pit Dimensions (m)				
Trial Pit Leng	gth (L)		1.800m	Trial Pit Len	gth (L)			Trial Pit Length (L)				
Trial Pit Brea	adth / Width (B)	0.800m	Trial Pit Brea	adth / Width	(B)		Trial Pit Brea				
Effective Dep	oth (D)		1.800m	Effective De	pth (D)			Effective De				
Time at Start	t of Filling		11.00	Time at Star	t of Filling			Time at Star				
Time at End	of Filling		11.02	Time at End	of Filling			Time at End				
Depth from S	Surface to Wa	ater (D _{TW})	0.800m	Depth below	Surface to \	Water (D _{TW})		Depth below	Surface to V	Vater (D _{TW})		
Water Depth	(W _D)		1.000m	Water Depth	n (W _D)		-	Water Depth	n (W _D)		-	
Maximum Fil	I Volume (V _N	,)	1.440m³	Maximum Fi	II Volume (V	w)	-	Maximum Fi	ill Volume (V _v	_N)	-	
Gravel used	to backfill Te	st Pit	Yes	Gravel used	to backfill Te	est Pit		Gravel used	to backfill Te	est Pit		
Porosity of G	ravel Backfill	(P_t)	0.400	Porosity of C	Fravel Backfi	$ (P_t) $		Porosity of C	Gravel Backfil	$ (P_t) $		
Corrected W	ater Volume	(V _{WC})	0.576m ³	Corrected W	/ater Volume	· (V _{WC})	-	Corrected W	/ater Volume	(V _{WC})	-	
	Time to s	oakaway			Time to	soakaway			Time to s	soakaway		
Tir	me	Depth to water	Duration	Ti	me	Depth to water	Duration	Ti	me	Depth to water	Duration	
Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	
1	11.020	0.800	0							, , ,		
1	11.030	0.800	60									
1	11.040	0.800	120							1		
1	11.050	0.800	180							1		
1	11.100	0.800	480							1		
1	11.200	0.800	1080							1		
1	11.300	0.800	1680							1		
1	11.400	0.800	2280							1		
1	11.500	0.800	2880									
1	12.000	0.800	3480							1		
1	12.300	0.800	5280									
1	13.000	0.800	7080									
1	13.300	0.800	8880									
1	14.000	0.800	10680									
1	14.300	0.800	12480							1		
1	15.000	0.800	14280							1		
1	15.300	0.800	16080							1		
1	16.000	0.800	17880									
3	9.000	0.850	165480									
4	9.000	0.900	251880									
4	9.000	0.900	251880									
4	9.000	0.900	251880									
4	9.000	0.900	251880									
	oss (75% ful		1.050m	25% water I	oss (75% fu	II)	-	25% water loss (75% full)				
	oss (50% ful	,	1.300m	50% water I			-	50% water	-			
	oss (25% ful		1.550m	75% water I			-	75% water	•	-		
25% time (s			-	25% time (s		•	-	25% time (s			-	
75% time (s			-	75% time (s			-	75% time (s			-	
Vp 75-25	,		0.288m³	Vp 75-25			-	Vp 75-25	,		-	
•	ual area from	area from test) 4.040m³ ap 50 (Actual area from test)	-		ual area fron	n test)	-					
tp 75 - 25		,		tp 75 - 25				tp 75 - 25				
-	ation Rate			Soil Infiltrat	ion Rate		-	Soil Infiltrat	tion Rate			
										npleted by		
				n (Seconds)					PRINT	1	Sumner	
0	36	500 7	200 ′	10800	14400	18000	21600	Tooted Dec		-		
© 0 #							0	Tested By	SIGN	Russell	Sumner	
§ 25 ±							25		DATE	31/08	/2021	
Degree of Infiltration (%) 00 25 00 00 00 00 00 00 00 00 00 00 00 00 00							50 75		PRINT	Russell	Sumner	
100			ļ				100	Calculated By	SIGN	Sumner		
o of) 6	60	120	180	240	300	360		DATE	14/10	/2021	
egre			Duratio	on (Minutes)					PRINT	Adam	Cheers	
	_	—Test Run	1 —— Te	est Run 2 -	——Test Ru	ın 3		Checked by	SIGN	Adam	Cheers	
									DATE	15/10	/2021	

1 DAY INFILTRATION ASSESSMENT - AIDE MEMOIR

Site: Garth Wymott 2
Client: Ministry of Justice

1 DAY INFILTRATION ASSESSMENT - WORKSHEET

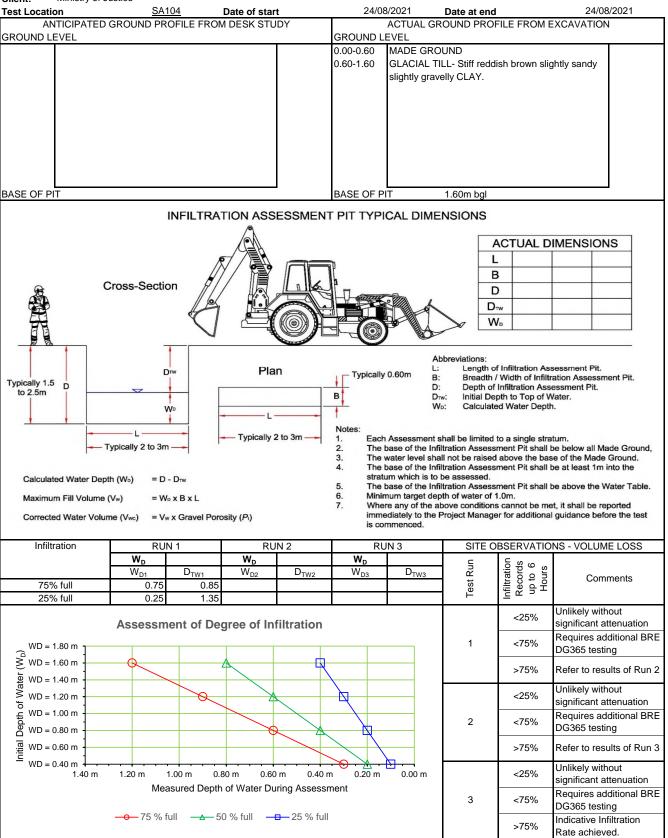

Site: Garth Wymott 2
Client: Pick Everard
Test Location

Client:	Pick Everard		400			00/06	V0004			04/00	10004		
Test Location			102	Date of start	Tost	Run 2	3/2021	Date at end		31/08	/2021		
Test Run 1 Pit Dimensions (m)						nsions (m)		Test Run 3 Pit Dimensions (m)					
Trial Pit Len		ioiono (iii)	2.000m	Trial Pit Length				Trial Pit Len					
	adth / Width (B)	0.600m	Trial Pit Breadt	` '	(B)			adth / Width (
Effective De	pth (D)	·	1.650m	Effective Depth	(D)			Effective De					
Time at Star	t of Filling		10.41	Time at Start of	Filling			Time at Star	t of Filling				
Time at End			10.44	Time at End of	Filling			Time at End	of Filling				
Depth from S	Surface to Wa	ater (D _{TW})	0.200m	Depth below Su		Water (D _{TW})			Surface to V	Vater (D _{TW})			
Water Depth	ν υ,		1.450m	Water Depth (V			-	Water Depth			-		
	II Volume (V _N	,	1.740m³	Maximum Fill V	,	**/	-		II Volume (V _V	**	-		
	to backfill Te		Yes	Gravel used to					to backfill Te				
	Gravel Backfill Vater Volume		0.400 0.696m ³	Porosity of Gra Corrected Wate		, ,	-		Gravel Backfil /ater Volume				
Corrected vv		oakaway	0.0901119	Corrected Wate		soakaway		Corrected W		soakaway	-		
		Depth to	Duration			Depth to	Duration			Depth to	Duration		
Tii	me	water	2 4.4.6	Time		water	2 4.4.0	Ti	me	water	2 4.4		
Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds		
1	10.440	0.200	0										
1	10.450	0.200	60										
1	10.460	0.200	120										
1	10.470	0.200	180										
1	10.480	0.200	240										
1	10.490	0.200	300										
1	10.500	0.200	360							-			
1	11.000 11.100	0.210 0.210	960 1560	 									
1	11.100	0.210	2160										
1	11.300	0.210	2760										
1	12.000	0.110	4560										
1	13.000	0.230	8160										
1	14.000	0.240	11760										
1	15.000	0.250	15360										
1	16.000	0.270	18960										
2	8.000	0.300	76560										
2	13.000	0.320	94560										
5	9.000	0.660	339360										
6	9.000	0.660	425760										
6	9.000	0.660	425760							1			
6	9.000	0.660	425760										
	9.000 oss (75% ful	0.660	425760 0.563m	25% water los	c /75% fu	ii)		25% water I	loss (75% fu	II)			
	oss (75 % ful oss (50% ful	•	0.925m	50% water los		•			loss (75% ful	,	-		
	oss (25% ful	•	1.288m	75% water los		•	_	75% water I	-				
25% time (s	•	<u>, </u>		25% time (sec	•		-	25% time (s		<u>, </u>	-		
75% time (s	econds)		-	75% time (sec	onds)		-	75% time (seconds)			-		
Vp 75-25			0.348m ³	Vp 75-25			-	Vp 75-25			-		
ap 50 (Acti	ual area from	ı test)	4.970m³	ap 50 (Actual	area fron	n test)	-		ual area fron	n test)	•		
tp 75 - 25				tp 75 - 25		_		tp 75 - 25					
Soil Infiltr	ation Rate		-	Soil Infiltration	Rate		-	Soil Infiltrat	ion Rate				
									Form con	npleted by			
				n (Seconds)					PRINT	Russell	Sumner		
(36	500 7	'200	10800 14	400	18000	21600	Tested By	CICN	Pussell	Sumner		
© 0 1							 0	resied by	SIGN	Russell	Summer		
© 25							25		DATE	26/08	/2021		
io 50							50		PRINT	Russell	Sumner		
75							75	Calculated		Russoll	Sumner		
<u>⊆</u> 100 1) 6	 60	. 120	100 By SIGN Russ									
99	, (~		on (Minutes)	.5	000	555		DATE		/2021		
Degree of Infiltration (%) 100 c 55 c 55			_ 4.410	,					PRINT Adam		Cheers		
_		—Test Run	1 —— Te	est Run 2 —	—Test Ru	ın 3		Checked by	SIGN Adam		Cheers		
									DATE	15/10	/2021		
									-	-	<u> </u>		

1 DAY INFILTRATION ASSESSMENT - AIDE MEMOIR

Site: Garth Wymott 2
Client: Ministry of Justice

1 DAY INFILTRATION ASSESSMENT - WORKSHEET

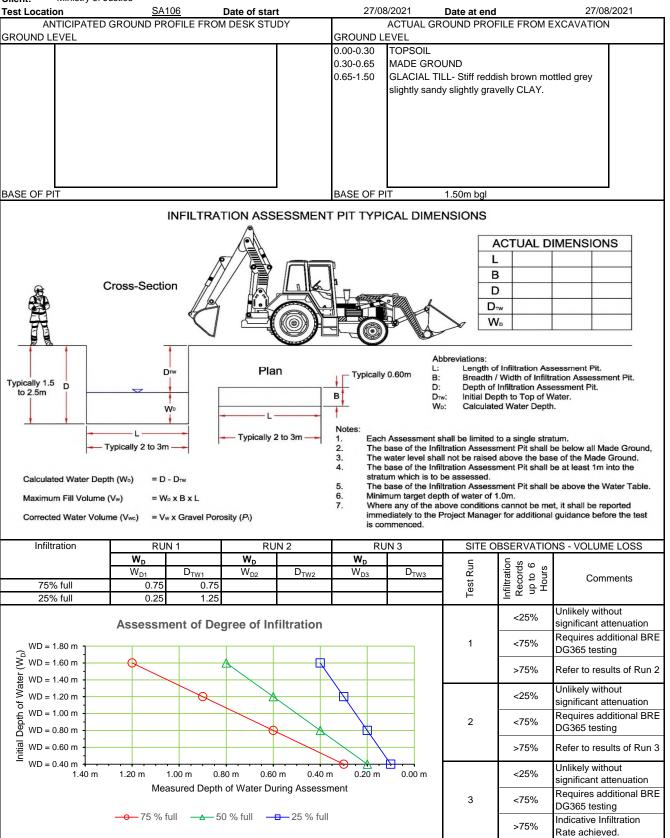

Site: Garth Wymott 2
Client: Pick Everard
Test Location

Client		Pick Everard		400			00/00	10004			00/00	10004		
Test L	ocatio			103	Date of start	Tost	26/08 Run 2	3/2021	Date at end		26/08	/2021		
Test Run 1 Pit Dimensions (m)							nsions (m)		Test Run 3 Pit Dimensions (m)					
Trial Pit Length (L) 2.000m					Trial Pit Length (naiona (m)	l	Trial Pit Length (L)					
		idth / Width (B)	0.600m		Trial Pit Breadth / Width (B)				Trial Pit Breadth / Width (B)				
	ve Der	•	<u>, </u>	1.500m	Effective Depth (<u> </u>		Effective De					
Time a	at Start	of Filling		9.28	Time at Start of	Filling			Time at Star	t of Filling				
Time a	at End	of Filling		9.30	Time at End of F	illing			Time at End	of Filling				
Depth	from S	Surface to Wa	ater (D _{TW})	0.470m	Depth below Sur	rface to V	Vater (D _™)		Depth below	Surface to V	Vater (D _{TW})			
	Depth	ν υ,		1.030m	Water Depth (W	_D)		-	Water Depth			-		
		I Volume (V _N	,	1.236m³	Maximum Fill Vo	olume (V _\	_N)	-	Maximum Fi	II Volume (V _v	_v)	-		
		to backfill Te		No	Gravel used to b					to backfill Te				
		ravel Backfill			Porosity of Grave		\ U			Gravel Backfill	· · · · ·			
Correc	ted W	ater Volume		1.236m³	Corrected Water			-	Corrected W	/ater Volume	(110)	-		
		Time to s	oakaway	Language		Time to	soakaway	D		Time to s	soakaway	Donation		
	Tir	me	Depth to water	Duration	Time		Depth to water	Duration	Tir	me	Depth to water	Duration		
Da	ay	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds		
1		9.300	0.470	0			, ,				, J			
1		9.310	0.470	60										
1		9.320	0.470	120										
1		9.330	0.470	180										
1		9.340	0.470	240										
1		9.350	0.470	300										
1		9.400	0.470	600	 						 			
1		9.500	0.470	1200						<u> </u>				
1		10.000	0.470	1800	1									
1		10.300	0.470	3600						 	 			
1		11.000	0.470	5400							-			
1		12.000 13.000	0.470 0.470	9000 12600							-			
1		13.300	0.470	14400						-	1			
1		14.000	0.470	16200										
1		14.300	0.470	18000										
1		15.000	0.470	19800					1					
1		15.300	0.470	21600										
1		16.000	0.470	23400										
1		16.000	0.470	23400										
1		16.000	0.470	23400										
1		16.000	0.470	23400										
1		16.000	0.470	23400										
		oss (75% ful		0.728m	25% water loss			-		oss (75% ful	•	-		
		oss (50% ful		0.985m	50% water loss			-	50% water I	•	-			
		oss (25% ful	l)	1.243m	75% water loss	•	11)	-		oss (25% ful	11)	-		
		econds)		-	25% time (seco 75% time (seco			-	25% time (s 75% time (s			-		
Vp 75	•	econus		0.618m ³	Vp 75-25	iius)		-	Vp 75-25	econus)		-		
		ıal area from	test)	3.878m³	ap 50 (Actual a	area fron	n test)			ual area fron	n test)	-		
tp 75 -	•	iai ai ca ii oii	1 1031/	3.070111	tp 75 - 25	1100 1101	ii testj		tp 75 - 25	aar arca mon	i test,	_		
		ation Rate		-	Soil Infiltration	Rate		-	Soil Infiltrat	ion Rate		-		
											npleted by			
				Duratio	n (Seconds)					PRINT	1 -	Sumner		
	0	36	500 7	7200 ·	10800 144	00	18000	21600	T I D.					
(9)	0							0	Tested By	SIGN	Russell	Sumner		
6) u	25							25		DATE	26/08	/2021		
atio	50							50		PRINT	Russell	Sumner		
nfiltr	75 100							75 100	Calculated	SIGN	Russell	Sumner		
) of I	0) (60	120	180 24	0	300	360	Ву	DATE	14/10	/2021		
	Duration (Minutes)									PRINT	Adam	Cheers		
gre														
Degree of Infiltration (%)			—Test Run	1 — T	est Run 2 ——	-Test Ri	ın 3		Checked by	SIGN	Adam	Cheers		
Degre		_	—Test Run	1 —— Te	est Run 2 ——	-Test Ru	ın 3		Checked by	SIGN DATE	Adam (

1 DAY INFILTRATION ASSESSMENT - AIDE MEMOIR

Site: Garth Wymott 2
Client: Ministry of Justice

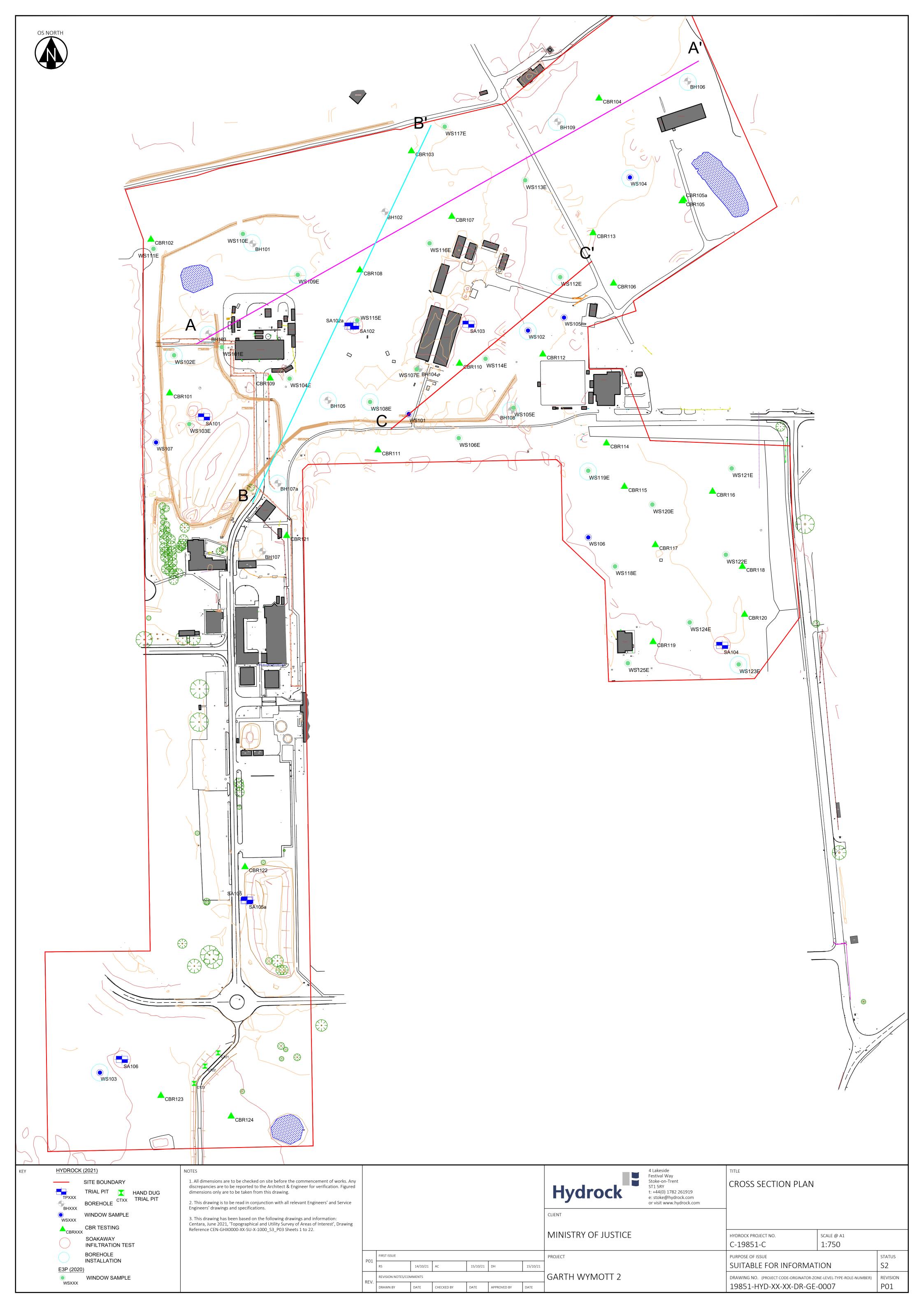
1 DAY INFILTRATION ASSESSMENT - WORKSHEET


Site: Garth Wymott 2
Client: Pick Everard

Test Location	on	SA	104	Date of star	t	24/08	3/2021	Date at end		24/08	/2021	
	Test I	Run 1			Test	Run 2			Test	Run 3		
	Pit Dimen	sions (m)			Pit Dime	nsions (m)		Pit Dimensions (m)				
Trial Pit Leng	gth (L)		2.000m	Trial Pit Len	gth (L)			Trial Pit Length (L)				
Trial Pit Brea	adth / Width (I	В)	0.600m	Trial Pit Brea	adth / Width	(B)		Trial Pit Brea	adth / Width ((B)		
Effective Dep	oth (D)		1.600m	Effective De	pth (D)			Effective De				
Time at Start	t of Filling		11.14	Time at Star	t of Filling			Time at Star				
Time at End	of Filling		11.19	Time at End	of Filling			Time at End				
Depth from S	Surface to Wa	ater (D _{TW})	0.600m	Depth below	Surface to \	Vater (D _™)		Depth below	Surface to V	Vater (D _{TW})		
Water Depth	(W _D)		1.000m	Water Depth	n (W _D)		-	Water Depth	n (W _D)		-	
Maximum Fil	II Volume (V _M	,)	1.200m³	Maximum Fi	II Volume (V	_W)	-	Maximum Fi	II Volume (V _V	_W)	-	
Gravel used	to backfill Te	st Pit	No	Gravel used	to backfill Te	est Pit		Gravel used	to backfill Te	est Pit		
Porosity of G	Gravel Backfill	(P _t)		Porosity of C	Gravel Backfi	$ (P_t) $		Porosity of C	Gravel Backfil	$ (P_t) $		
Corrected W	ater Volume	(V _{WC})	1.200m³	Corrected W	ater Volume	(V _{WC})	-	Corrected W	/ater Volume	(V _{WC})	-	
	Time to s	oakaway			Time to	soakaway			Time to s	soakaway		
Tir	me	Depth to	Duration	Ti	me	Depth to	Duration	Ti	me	Depth to	Duration	
Day	Time	water	Casanda	Day	Time	water	Casanda	Dov	Time	water	Casanda	
Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	
1	11.190	0.600	0									
1	11.200	0.600	60									
1	11.210	0.600	120	!		-				1		
1	11.220	0.600	180							1		
1	11.230	0.600	240									
1	11.240	0.600	300							 		
1	11.250	0.600	360							ļ		
1	11.300	0.600	660									
1	11.400	0.600	1260									
1	11.500	0.600	1860									
1	12.000	0.600	2460									
1	12.100	0.600	3060									
1	12.200	0.600	3660									
1	12.300	0.600	4260									
1	13.000	0.600	6060									
1	13.300	0.600	7860									
1	14.000	0.600	9660									
1	14.300	0.600	11460									
1	15.000	0.600	13260									
1	15.300	0.600	15060									
1	15.300	0.600	15060									
1	15.300	0.600	15060									
1	15.300	0.600	15060									
25% water le	oss (75% ful		0.850m	25% water I	oss (75% fu	II)	-	25% water	loss (75% fu	II)		
	oss (50% ful	•	1.100m	50% water I			_	50% water loss (50% full)				
	oss (25% ful		1.350m	75% water I			_	75% water	-			
25% time (s		,	-	25% time (s		,	_	25% time (s		,		
75% time (s			-	75% time (s			_	75% time (s			-	
Vp 75-25	,		0.600m³	Vp 75-25			_	Vp 75-25	,		-	
•	ual area from	test)	3.800m³	ap 50 (Act	ual area fron	n test)	_		ual area fron	n test)	_	
tp 75 - 25		. 1001,	0.000111	tp 75 - 25		1001,		tp 75 - 25				
-	ation Rate			Soil Infiltrat	ion Pate	I	_	Soil Infiltrat	ion Pate	1		
	ation itato			Joon minitiat	ion rate			CON HIMILIA		npleted by		
			Duratio	n (Seconds)						1		
C	36	300 7			14400	18000	21600		PRINT	Russell	Sumner	
0 ±	,	, , , , , , , , , ,	200	10000	14400	10000		Tested By	SIGN	Russell	Sumner	
							E 1					
© 25 □ 50							25		DATE	24/08	/2021	
4 05 atj.							50		PRINT	Russell	Sumner	
75 till 75							75	Calculated	SIGN	Russell	Sumner	
Degree of Infiltration (%) 05 25 00 00 00 00 00 00 00 00 00 00 00 00 00) 6	60 ´	120	180	240	300	 † 100 360	Ву	DATE	14/10		
jree				on (Minutes)					+	1		
Deg								Oh a al cold	PRINT Adam			
		- Test Run	1 — Te	est Run 2 -	——Test Ru	ın 3		Checked by			Cheers	
									DATE	15/10	/2021	
									-	-		

1 DAY INFILTRATION ASSESSMENT - AIDE MEMOIR

Site: Garth Wymott 2
Client: Ministry of Justice


1 DAY INFILTRATION ASSESSMENT - WORKSHEET

Site: Garth Wymott 2
Client: Pick Everard
Test Location

Client:	Pick Everard		100			07/06	V0004			07/00	/0004		
Test Location			106	Date of start	Tost	27/08 Run 2	3/2021	Date at end			/2021		
Test Run 1 Pit Dimensions (m)						nsions (m)		Test Run 3 Pit Dimensions (m)					
Trial Pit Len		isions (iii)	2.000m	Trial Pit Length		iisioiis (iii)	l	Trial Pit Len					
	adth / Width (B)	0.600m	Trial Pit Breadth	` '	(B)			adth / Width (B)				
Effective De	,	,	1.500m	Effective Depth				Effective De					
Time at Star	t of Filling		8.57	Time at Start of	Filling			Time at Star	t of Filling				
Time at End	of Filling		9.00	Time at End of	Filling			Time at End	of Filling				
Depth from 3	Surface to Wa	ater (D _{TW})	0.500m	Depth below Su	urface to \	Nater (D _{TW})		Depth below	Surface to V	Vater (D _{TW})			
Water Depth	ν υ,		1.000m	Water Depth (W	V _D)		-	Water Depth			-		
	II Volume (V _v	• •	1.200m³	Maximum Fill V	olume (V	w)	-	Maximum Fi	II Volume (V _v	_V)	-		
	to backfill Te		No	Gravel used to					to backfill Te				
	Gravel Backfill			Porosity of Grav		(0			Gravel Backfil				
Corrected W	/ater Volume		1.200m³	Corrected Water			-	Corrected W	/ater Volume	(110)	-		
	Time to s	oakaway	Language		Time to	soakaway	D		Time to	soakaway	D		
Ti	me	Depth to water	Duration	Time		Depth to water	Duration	Ti	me	Depth to water	Duration		
Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds	Day	Time	(m bgl)	Seconds		
1	9.000	0.500	0							,			
1	9.010	0.500	60										
1	9.020	0.500	120										
1	9.030	0.500	180										
1	9.040	0.500	240										
1	9.050	0.500	300										
1	9.100	0.500	600										
1	9.200	0.500	1200			<u> </u>							
1	9.300	0.520	1800										
1	10.000	0.530	3600										
1	10.300	0.540	5400										
1	11.000	0.550	7200										
1	12.000	0.550	10800 14400										
1	13.000 14.000	0.550 0.550	18000										
1	15.000	0.550	21600	 						 			
1	16.000	0.550	25200										
1	16.000	0.550	25200										
1	16.000	0.550	25200										
1	16.000	0.550	25200										
1	16.000	0.550	25200										
1	16.000	0.550	25200										
1	16.000	0.550	25200										
25% water l	oss (75% ful	l)	0.750m	25% water loss	s (75% fu	ıll)	-	25% water I	loss (75% fu	ll)	-		
50% water I	oss (50% ful	l)	1.000m	50% water loss	s (50 % fu	ill)	-	50% water I	-				
	oss (25% ful	l)	1.250m	75% water loss		III)	-	75% water I	-				
25% time (s	•		-	25% time (seco			-	25% time (seconds)			-		
75% time (s	econds)		-	75% time (seco	onds)		-	75% time (s	econds)		-		
Vp 75-25		. 44\	0.600m ³	Vp 75-25		44\	-	Vp 75-25		- 41)	-		
	ual area from	i test)	3.800m³	ap 50 (Actual	area iroi	n test)	-	tp 75 - 25	ual area fron	n test)	-		
tp 75 - 25	ation Rate		-	tp 75 - 25 Soil Infiltration	Poto		_	Soil Infiltrat	ion Data				
3011 11111111	alion Nate		-	3011 IIIIIIII ation	Rate		-	Son minutal		npleted by			
			Duratio	n (Seconds)							_		
(36	500 7		,	100	18000	21600		PRINT	Russell	Sumner		
0 =			4		· · · · · ·	 	 0	Tested By	SIGN	Russell	Sumner		
⊗ 25							25		DATE	27/08	/2021		
<u>.</u> 50							 50		PRINT		Sumner		
75 <u>±</u>							75	Calculated					
Degree of Infiltration (%) 100 - 100 (······································	 	120	180 24	10	300	100	Ву	SIGN		Sumner		
0 0 0) (60	120 Duratio	180 24 on (Minutes)	+U	300	360		DATE		/2021		
Jegr			Durall	(wiii lates)					PRINT	Adam	Cheers		
	_	—Test Run	1 — Te	est Run 2 —	-Test R	un 3		Checked by	SIGN	Adam	Cheers		
									DATE	15/10/2021			
								•	•	•			

Cross Section Drawing and Sections

Project ID: C-19851 South West to North East Project Title: Garth Wymott 2 Document Reference: Figure B to B' Location: Leyland, Lancashire Horizontal Scale: 1:3250 Client: Ministry of Justice Vertical Scale: 1:500 ----2:00 ----2.50 Legend Key MADE GROUND HEAD GLACIAL TILL 141.14 81.81 Chainage (m) 1.42 Offset (m) 11.05 10.59 10.42 Elevation (mAOD)

Project ID: C-19851 South West to North East Project Title: Garth Wymott 2 Document Reference: Figure C to C' Location: Leyland, Lancashire Horizontal Scale: 1:3250 Client: Ministry of Justice Vertical Scale: 1:500 ---0.60 ---1.20 - - -2.40 - - -3.20 Legend Key TOPSOIL GLACIAL TILL MADE GROUND-POND BAC.. NATURAL-POND INFILL 396.53 26.15 0.00 Chainage (m) 10.06 33.87 0.85 Offset (m) 11.26 11.40 10.51 12.57 12.80 Elevation (mAOD)

C-19851 West to East Project ID: Project Title: Garth Wymott 2 Document Reference: Figure A to A' Location: Leyland, Lancashire Horizontal Scale: 1:3250 Client: Ministry of Justice Vertical Scale: 1:500 14 13 12 11 10 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -34 -41 -42 -43 -44 -45 -50 -51 -52 -53 -54 Legend Key TOPSOIL GLACIAL TILL HEAD MADE GROUND SINGLETON MUDSTONE MEMBER 147.91 89.05 Chainage (m) 29.98 18.96 Offset (m) 12.00 10.49 10.75 10.98 10.40 13.16 Elevation (mAOD)

Exploratory Hole Photographs

Date: 26/08/2021

Direction
Photograph Taken:

n/a.

Description: BH106 rock core from 23.50m to 32.50m bgl.

Site Investigation Photograph 2

Date: 25/08/21

Direction
Photograph Taken:

n/a.

Description: BH107 concrete obstruction encountered down to 1.20m bgl.

Date: 25/08/2021

Direction
Photograph Taken:

n/a.

Description: WS102 0.00m to 1.20m bgl.

Site Investigation Photograph 4

Date: 23/08/21

Direction
Photograph Taken:

n/a.

Description: WS102 1.20m to 5.00m bgl.

Date: 23/08/21

Direction
Photograph Taken:

n/a.

Description: WS101 0.00m to 1.20m bgl.

Site Investigation Photograph 6

Date: 23/08/21

Direction
Photograph Taken:

n/a.

Description: WS101 1.20m to 5.00m bgl.

Date: 25/08/2021

Direction
Photograph Taken:

n/a.

Description: WS103 1.20m to 2.50m bgl.

Site Investigation Photograph 8

Date: 23/08/21

Direction
Photograph Taken:

n/a.

Description: WS105 1.20m to 5.00m bgl.

Date: 22/08/21

Direction
Photograph Taken:

n/a.

Description: SA101 arisings.

Site Investigation Photograph 10

Date: 22/08/21

Direction
Photograph Taken:

n/a.

Description: SA101 long wall (1.80m bgl.).

Date: 22/08/21

Direction
Photograph Taken:

n/a.

Description: SA101 short wall (1.80m

bgl).

Site Investigation Photograph 12

Date: 27/08/21

Direction
Photograph Taken:

n/a.

Description: SA105

arisings.

Date: 27/08/21

Direction
Photograph Taken:

n/a.

Description: SA105 short wall (1.50m

bgl)

Site Investigation Photograph 14

Date: 27/08/21

Direction Photograph Taken:n/a.

Description: SA105 long wall (1.50m bgl)

Date: 27/08/21

Direction
Photograph Taken:

n/a.

Description: SA105 long wall (1.20m bgl)

Site Investigation Photograph 16

Date: 27/08/21

Direction Photograph Taken:n/a.

Description: SA105 short wall (1.20m bgl)

Date: 27/08/21

Direction
Photograph Taken:

n/a.

Description: SA106 arisings.

Site Investigation Photograph 18

Date: 27/08/21

Direction Photograph Taken:n/a.

Description: SA106 long wall (1.50m bgl)

Date: 27/08/21

Direction
Photograph Taken:

n/a.

Description: SA106 short wall (1.50m

bgl)

Site Investigation Photograph 20

Date: 26/08/21

Direction Photograph Taken:n/a.

Description: SA102 long wall (1.65m bgl)

Date: 26/08/21

Direction
Photograph Taken:

n/a.

Description: SA103 arisings.

Site Investigation Photograph 22

Date: 26/08/21

Direction Photograph Taken:n/a.

Description: SA103 long wall (1.50m bgl)

Appendix C Geotechnical Test Results and Geotechnical Plots

Hydrock Geotechnical Laboratory Test Results

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690

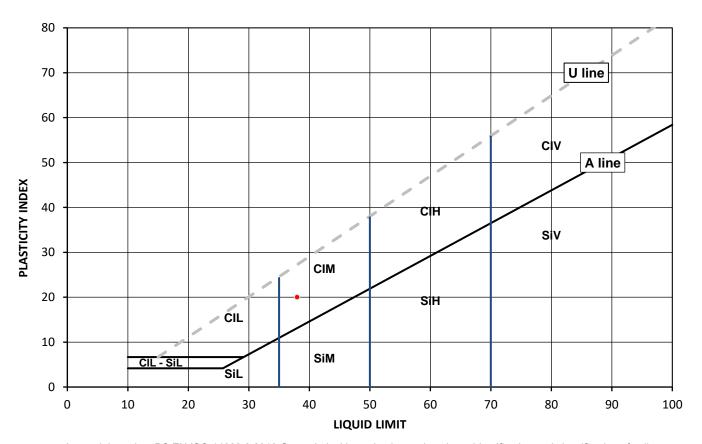
Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 17/09/2021

Sampled By: i2 - R.S

Depth Top [m]: 4.00

Depth Base [m]: 4.45

Sample Type: U


Test Results:

Laboratory Reference: 2006859
Hole No.: BH108
Sample Reference: Not Given

Sample Description: Brown slightly gravelly sandy CLAY

Sample Preparation: Tested after >425um removed by hand

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
20	38	18	20	98

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690

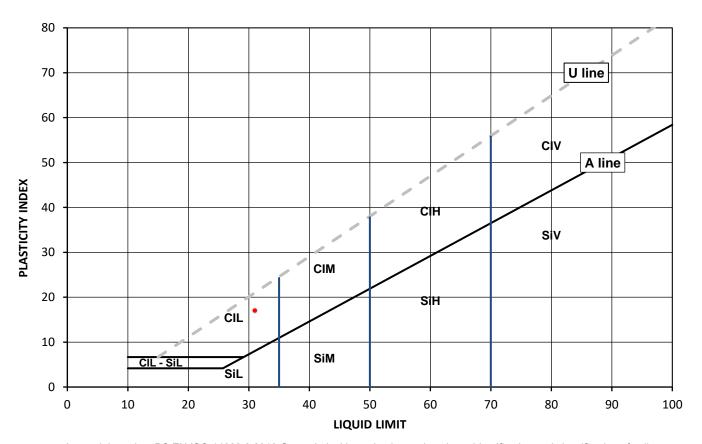
Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 17/09/2021

Sampled By: i2 - R.S

Depth Top [m]: 6.50

Depth Base [m]: 6.95

Sample Type: U


Test Results:

Laboratory Reference: 2006865 BH107A Hole No.: Sample Reference: Not Given

Sample Description: Brown slightly gravelly very sandy CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
17	31	14	17	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed: Harika

Busible

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690

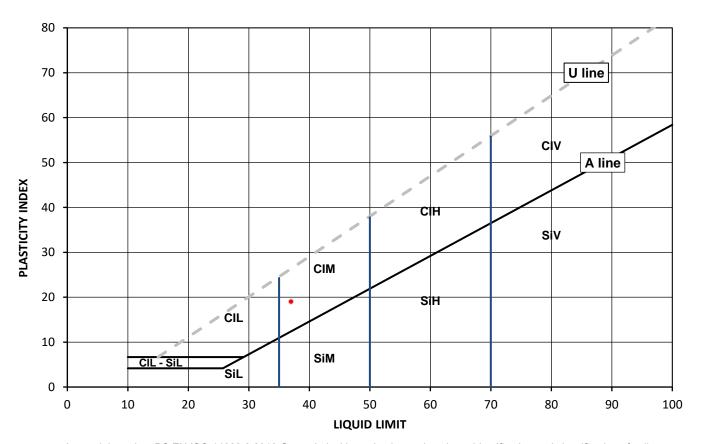
Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 21/09/2021

Sampled By: i2 - R.S

Depth Top [m]: 1.20

Depth Base [m]: 1.65

Sample Type: D


Test Results:

Laboratory Reference: 2006868 BH106 Hole No.: Sample Reference: Not Given

Sample Description: Greyish brown sandy CLAY

Tested in natural condition Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
18	37	18	19	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Harika

Buside

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Page 1 of 1 **Date Reported: 18/10/2021**

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

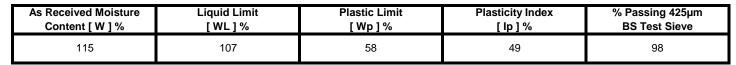
Client Reference: C-19851-C Job Number: 21-98690

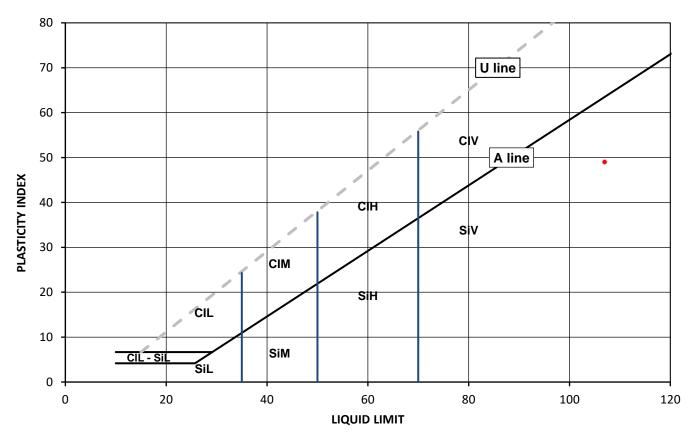
Test Results:

Laboratory Reference: 2006869 WS102 Hole No.:

Sample Reference: Sample Description:

Dark grey slightly gravelly organic CLAY


Tested after >425um removed by hand Sample Preparation:


Date Sampled:	Not Given
Date Received:	13/09/2021
Date Tested:	21/09/2021
Sampled By:	i2 - R.S

Depth Top [m]: 2.00

Depth Base [m]: 2.45

Sample Type: D

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Marika

Buside

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2021

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address: 4 Lakeside, Festival Park,

Stoke on Trent, ST1 5RY

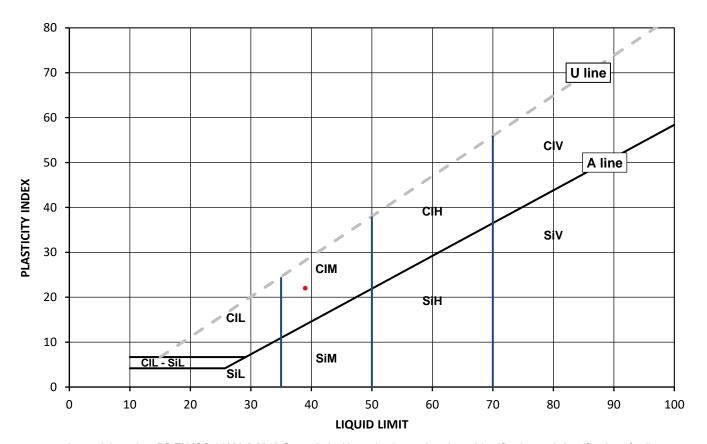
Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690

Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 21/09/2021

Sampled By: i2 - R.S


Test Results:

Laboratory Reference:2006870Depth Top [m]: 3.00Hole No.:WS102Depth Base [m]: 3.45Sample Reference:7Sample Type: D

Sample Description: Brown mottled dark grey slightly gravelly sandy CLAY with fragments of wood

Sample Preparation: Tested after >425um removed by hand

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
20	39	17	22	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Bursible

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2021

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 4 Lakeside, Festival Park,

Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

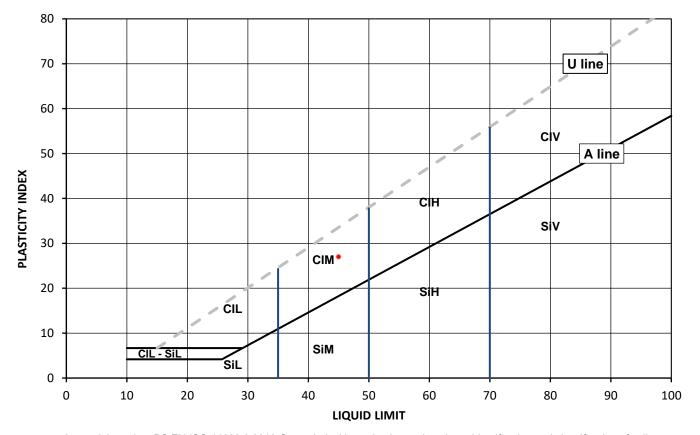
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given

Date Received: 13/09/2021 Date Tested: 21/09/2021 Sampled By: i2 - R.S

Test Results:

Laboratory Reference: 2006871 WS105 Hole No.:


Sample Reference: Sample Description: Brown slightly gravelly slightly sandy CLAY

Depth Top [m]: 1.20 Depth Base [m]: 1.65

Sample Type: D

Sample Preparation: Tested after >425um removed by hand

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
20	45	18	27	98

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Harika

Busible

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2021

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690

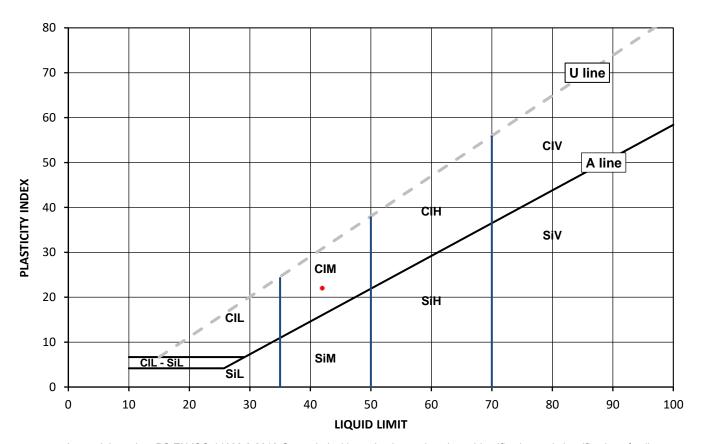
Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 21/09/2021

Sampled By: i2 - R.S

Depth Top [m]: 2.00

Depth Base [m]: 2.45

Sample Type: D


Test Results:

Laboratory Reference: 2006872 WS105 Hole No.: Sample Reference:

Sample Description: Brown slightly gravelly sandy CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
18	42	20	22	

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Harika

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Busible

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690

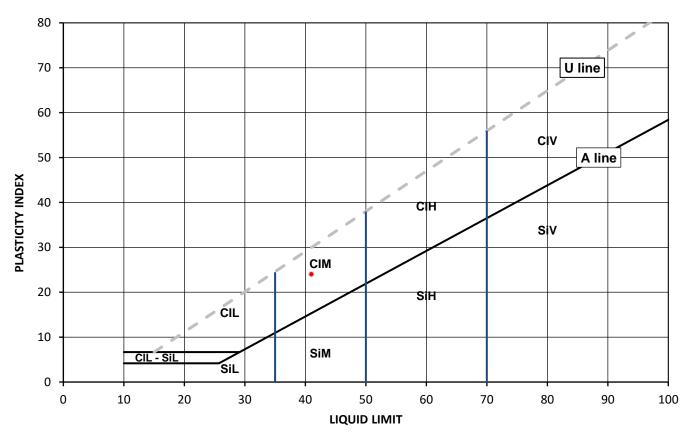
Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 21/09/2021

Sampled By: i2 - R.S

Depth Top [m]: 2.00

Depth Base [m]: 2.45

Sample Type: D


Test Results:

Laboratory Reference: 2006873 Hole No.: WS106 Sample Reference: 4

Sample Description: Brown sandy CLAY

Sample Preparation: Tested in natural condition

I	As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
	Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
	17	41	17	24	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Buside

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2021

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

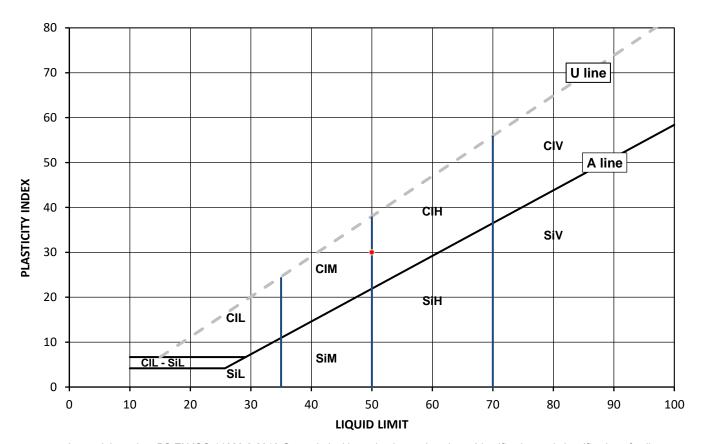
4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690

Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 21/09/2021 Sampled By: i2 - R.S


Test Results:

Laboratory Reference: 2006874 Depth Top [m]: 1.20 WS103 Depth Base [m]: 1.65 Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Brown mottled grey slightly gravelly slightly sandy CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
19	50	20	30	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Harika

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Busible Page 1 of 1

Date Reported: 18/10/2021

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690

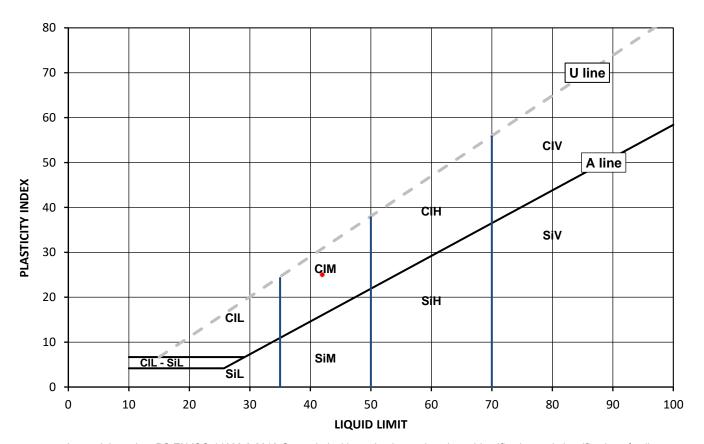
Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 21/09/2021

Sampled By: i2 - R.S

Depth Top [m]: 2.00

Depth Base [m]: 2.45

Sample Type: D


Test Results:

Laboratory Reference: 2006875 BH106 Hole No.: Sample Reference: Not Given

Sample Description: Brown slightly gravelly sandy CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
20	42	17	25	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Harika

Buside

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2021

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

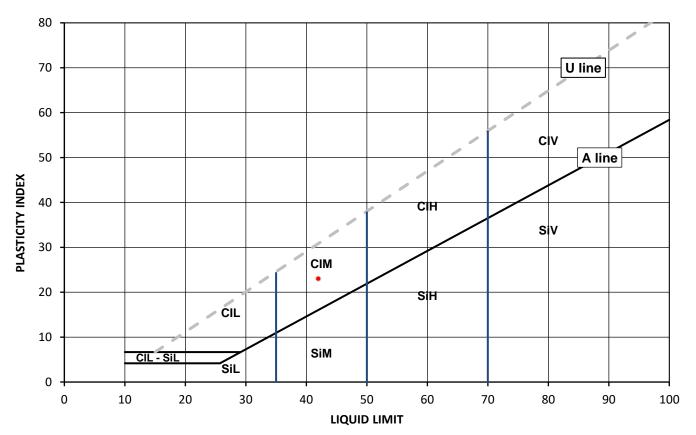
Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690

Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 21/09/2021

Sampled By: i2 - R.S


Test Results:

Laboratory Reference: 2006876 Depth Top [m]: 1.20 BH105 Depth Base [m]: 1.65 Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Brown slightly gravelly sandy CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
19	42	19	23	96

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed: Harika

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager

Date Reported: 18/10/2021

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Busible

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

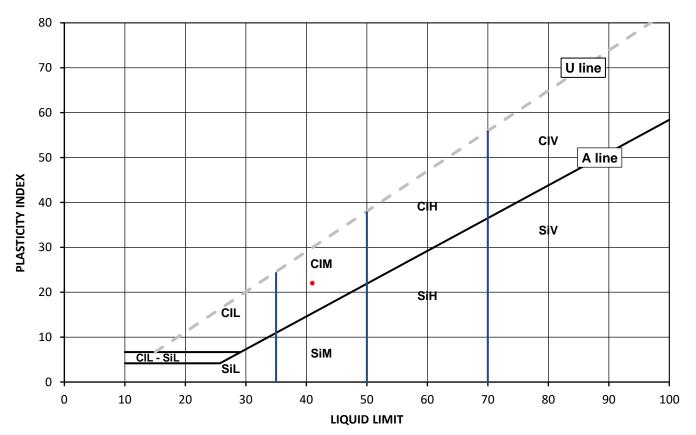
Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given

Date Received: 13/09/2021 Date Tested: 21/09/2021 Sampled By: i2 - R.S

Depth Top [m]: 2.00

Depth Base [m]: 2.45

Sample Type: D


Test Results:

Laboratory Reference: 2006877 BH108 Hole No.: Sample Reference: Not Given

Sample Description: Brown slightly gravelly sandy CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
19	41	19	22	95

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed: Harika

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing. Busible Page 1 of 1

Date Reported: 18/10/2021 GF 236.11

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

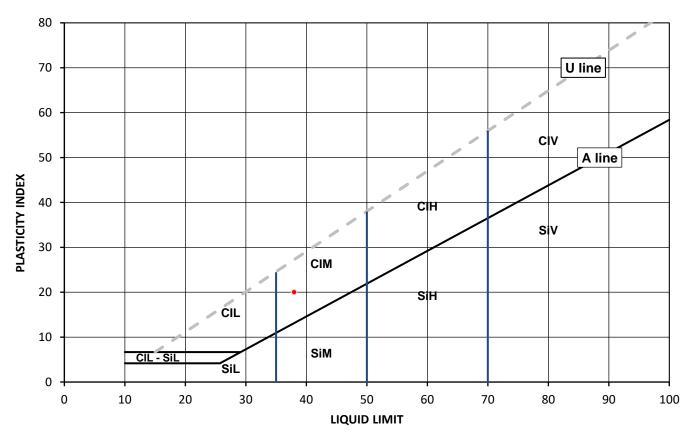
Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690

Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 20/09/2021

Sampled By: i2 - R.S


Test Results:

Laboratory Reference: 2011183 Depth Top [m]: 2.00 BH109 Depth Base [m]: 2.45 Hole No.: Sample Reference: Not Given Sample Type: U

Sample Description: Greyish brown slightly gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
18	38	18	20	96

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Harika

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Busible Page 1 of 1

Date Reported: 18/10/2021

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690

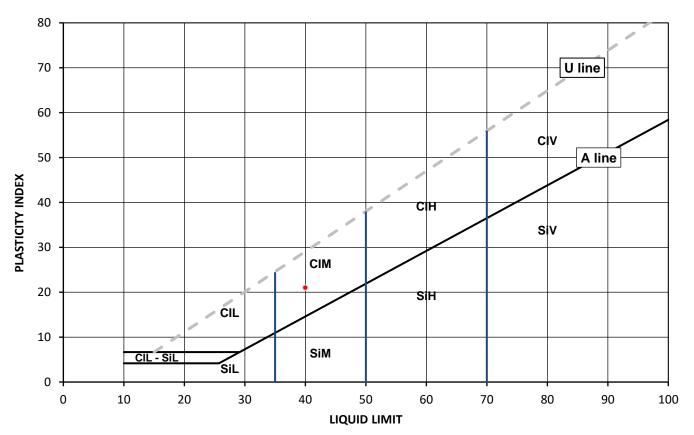
Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 21/09/2021

Sampled By: i2 - R.S

Depth Top [m]: 1.20

Depth Base [m]: 1.65

Sample Type: U


Test Results:

Laboratory Reference: 2011185 BH109 Hole No.: Sample Reference: Not Given

Sample Description: Brown slightly gravelly sandy CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
18	40	19	21	

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed: Harika

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager

Date Reported: 18/10/2021

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Busible

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

Client Reference: C-19851-C

Job Number: 21-98690

Date Sampled: Not Given

Date Received: 13/09/2021 Date Tested: 17/09-21/09/2021

Sampled By: i2 - R.S

Client Address:

4 Lakeside, Festival Park,
Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	2				ntent	Content W]		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Moisture Content [W]	Water Cont [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2006888	BH103	Not Given	1.20	1.20	В	Greyish brown CLAY		21										l
2006887	BH104	Not Given	0.80	0.80	В	Greyish brown CLAY		23										
2006876	BH105	Not Given	1.20	1.65	D	Brown slightly gravelly sandy CLAY	Atterberg 4 Point	19		96	42	19	23					
2006868	BH106	Not Given	1.20	1.65	D	Greyish brown sandy CLAY	Atterberg 4 Point	18		100	37	18	19					
2006875	BH106	Not Given	2.00	2.45	D	Brown slightly gravelly sandy CLAY	Atterberg 4 Point	20		99	42	17	25					
2006865	BH107A	Not Given	6.50	6.95	U	Brown slightly gravelly very sandy CLAY	Atterberg 4 Point	17		99	31	14	17					
2006877	BH108	Not Given	2.00	2.45	D	Brown slightly gravelly sandy CLAY	Atterberg 4 Point	19		95	41	19	22					
2006859	BH108	Not Given	4.00	4.45	U	Brown slightly gravelly sandy CLAY	Atterberg 4 Point	20		98	38	18	20					
2011185	BH109	Not Given	1.20	1.65	U	Brown slightly gravelly sandy CLAY	Atterberg 4 Point	18		97	40	19	21					
2011183	BH109	Not Given	2.00	2.45	U	Greyish brown slightly gravelly sandy CLAY	Atterberg 4 Point	18		96	38	18	20					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Marika

PL Deputy Geotechnical Laboratory Manager

for and on behalf of i2 Analytical Ltd

Monika Janoszek

GF 238.13

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given

Date Tested: 17/09-21/09/2021

Sampled By: i2 - R.S

Date Received: 13/09/2021

Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN Hydrock Consultants Ltd 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Client Address:

Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2 4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Russell Sumner Contact: Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

4041

Client:

			Sample	2				ntent	Content W]		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	Moisture Content [W]	Water Conf	% Passing 425um %	WL	Wp %	lp %	bulk Mg/m3	dry Mg/m3	PD Mg/m3	Total % Porosity#	
2006884	CB4106	1	0.47	0.47	D	Dark brown mottled yellowish brown slightly silty CLAY		24										
2006886	WS102	2	0.20	0.50	В	Greyish brown CLAY		20										
2006869	WS102	4	2.00	2.45	D	Dark grey slightly gravelly organic CLAY	Atterberg 4 Point	115		98	107	58	49					
2006870	WS102	7	3.00	3.45	D	Brown mottled dark grey slightly gravelly sandy CLAY with fragments of wood	Atterberg 4 Point	20		99	39	17	22					
2006885	WS103	Not Given	0.30	0.70	В	Brown CLAY		16										
2006874	WS103	Not Given	1.20	1.65	D	Brown mottled grey slightly gravelly slightly sandy CLAY	Atterberg 4 Point	19		99	50	20	30					
2006871	WS105	3	1.20	1.65	D	Brown slightly gravelly slightly sandy CLAY	Atterberg 4 Point	20		98	45	18	27					
2006872	WS105	5	2.00	2.45	D	Brown slightly gravelly sandy CLAY	Atterberg 4 Point	18		99	42	20	22					
2006873	WS106	4	2.00	2.45	D	Brown sandy CLAY	Atterberg 4 Point	17		100	41	17	24					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Marika

Monika Janoszek PL Deputy Geotechnical Laboratory Manager

for and on behalf of i2 Analytical Ltd

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address: 4 Lakeside, Festival Park,

Stoke on Trent, ST1 5RY

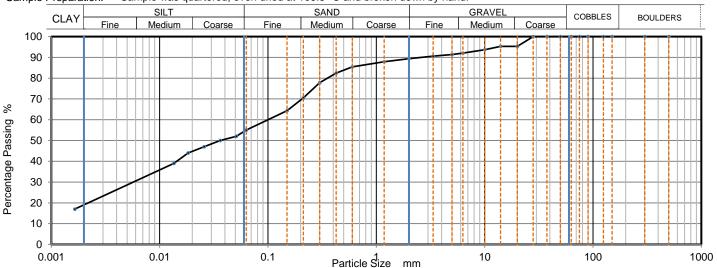
Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 21/09/2021 Sampled By: i2 - R.S

Depth Top [m]: 8.00

Depth Base [m]: 8.45


Sample Type: B

Test Results:

Laboratory Reference: 2006878 BH107a Hole No.: Sample Reference: Not Given

Sample Description: Brown gravelly clayey very sandy SILT

Sample Preparation: Sample was quartered, oven dried at 106.3 °C and broken down by hand.

mm

Siev	ing	Sedimentation					
Particle Size mm	% Passing	Particle Size mm	% Passing				
500	100	0.0630	55				
300	100	0.0509	52				
150	100	0.0362	50				
125	100	0.0258	47				
90	100	0.0183	44				
75	100	0.0135	39				
63	100	0.0016	17				
50	100						
37.5	100						
28	100						
20	95						
14	95						
10	94						
6.3	92						
5	91						
3.35	91	Particle density	(assumed)				
2	89	2.65	Mg/m3				
1.18	88						
0.6	85	1					
0.425	82	1					
0.3	78	1					
0.212	71						
0.15	64						
0.063	55	1					

Sample Proportions	% dry mass
Very coarse	0
Gravel	11
Sand	34
Silt	36
Clay	19

Grading Analysis		
D100	mm	28
D60	mm	0.0998
D30	mm	0.00594
D10	mm	
Uniformity Coefficient	> 61	
Curvature Coefficient		

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377: Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed: Marika

Buside

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1 **Date Reported:** 18/10/2021

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

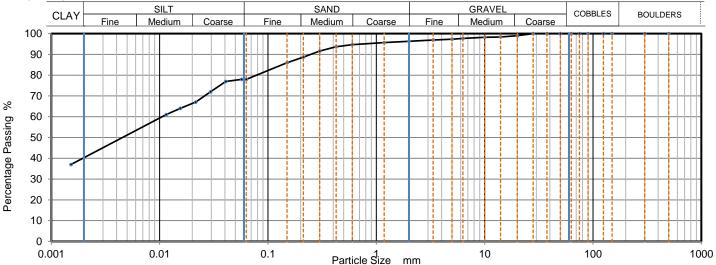
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 20/09/2021 Sampled By: i2 - R.S

Depth Top [m]: 1.20

Depth Base [m]: 1.60

Sample Type: B


Test Results:

Laboratory Reference: 2006879 SA104 Hole No.:

Sample Reference: Sample Description:

Brown slightly gravelly sandy very silty CLAY

Sample Preparation: Sample was quartered, oven dried at 106.9 °C and broken down by hand.

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0570	78
300	100	0.0407	77
150	100	0.0296	72
125	100	0.0215	67
90	100	0.0155	64
75	100	0.0115	61
63	100	0.0015	37
50	100		
37.5	100		
28	100		
20	99		
14	98		
10	98		
6.3	98		
5	97		
3.35	97	Particle density	(assumed)
2	96	2.65	Mg/m3
1.18	96		
0.6	95	1	
0.425	94	1	
0.3	92	1	
0.212	89		
0.15	86		
0.063	78	1	

Sample Proportions	% dry mass					
Very coarse	0					
Gravel	4					
Sand	18					
Silt	38					
Clay	40					

Grading Analysis		
D100	mm	28
D60	mm	0.0107
D30	mm	
D10	mm	
Uniformity Coefficient	> 7.1	
Curvature Coefficient		

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed: Marika

Buside

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1 **Date Reported:** 18/10/2021

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

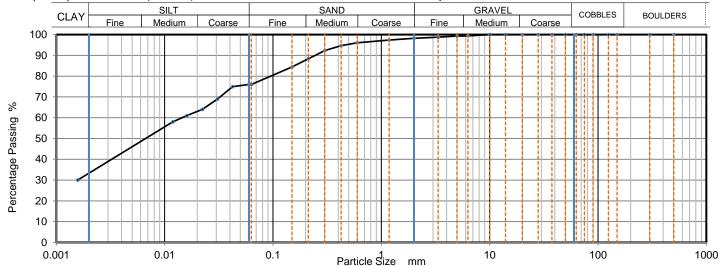
4 Lakeside, Festival Park,

Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 20/09/2021 Sampled By: i2 - R.S


Test Results:

Client Address:

Laboratory Reference: 2006880 Depth Top [m]: 5.00 BH102 Depth Base [m]: 5.50 Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Brown slightly gravelly sandy very clayey SILT

Sample Preparation: Sample was quartered, oven dried at 106.8 °C and broken down by hand.

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0594	76
300	100	0.0424	75
150	100	0.0308	69
125	100	0.0223	64
90	100	0.0160	61
75	100	0.0119	58
63	100	0.0016	30
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	99		
5	99		
3.35	99	Particle density	(assumed)
2	98	2.65	Mg/m3
1.18	97		_
0.6	96]	
0.425	95		
0.3	92	<u> </u>	
0.212	88		
0.15	84		
0.063	76		

Sample Proportions	% dry mass				
Very coarse	0				
Gravel	2				
Sand	22				
Silt	42				
Clay	34				

Grading Analysis		
D100	mm	10
D60	mm	0.0147
D30	mm	
D10	mm	
Uniformity Coefficient		> 9.3
Curvature Coefficient		

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Remarks:

Signed: Marika

Buside

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2021

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

4 Lakeside, Festival Park,

Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

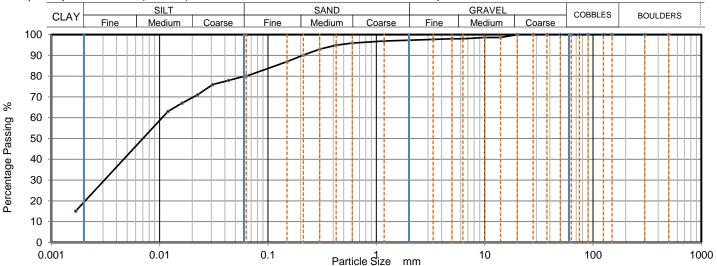
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 21/09/2021 Sampled By: i2 - R.S

Depth Top [m]: 1.20

Depth Base [m]: 1.50

Sample Type: B


Test Results:

Client Address:

Laboratory Reference: 2006881 SA106 Hole No.: Sample Reference:

Sample Description: Brown slightly gravelly sandy clayey SILT

Sample Preparation: Sample was quartered, oven dried at 106.9 °C and broken down by hand.

Siev	ring	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0607	80
300	100	0.0433	78
150	100	0.0309	76
125	100	0.0224	71
90	100	0.0161	67
75	100	0.0119	63
63	100	0.0017	15
50	100		
37.5	100		
28	100		
20	100		
14	99		
10	99		
6.3	98		
5	98		
3.35	98	Particle density	(assumed)
2	97	2.65	Mg/m3
1.18	97		
0.6	96	1	
0.425	95		
0.3	93	1	
0.212	90		
0.15	87]	
0.063	80		

Sample Proportions	% dry mass
Very coarse	0
Gravel	3
Sand	17
Silt	61
Clay	19

Grading Analysis		
D100	mm	20
D60	mm	0.0104
D30	mm	0.00309
D10	mm	
Uniformity Coefficient		> 6.2
Curvature Coefficient		

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377: Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Remarks:

Signed: Marika

Buside

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2021

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Northampton NN4 7EB

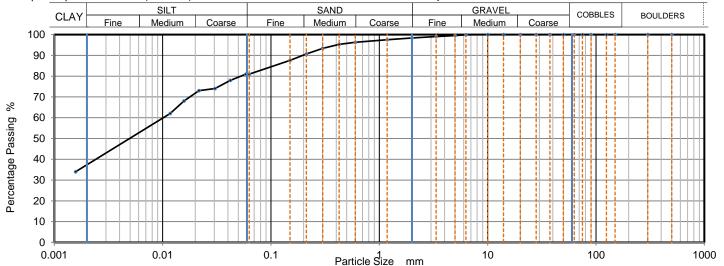
Brackmills Industrial Estate

Hydrock Consultants Ltd Client Reference: C-19851-C Client: Client Address: Job Number: 21-98690 4 Lakeside, Festival Park,

Date Sampled: Not Given Stoke on Trent, ST1 5RY Date Received: 13/09/2021 Russell Sumner Date Tested: 20/09/2021 Garth Wymott 2 Sampled By: i2 - R.S

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:


Site Address:

Contact:

Laboratory Reference: 2006882 Depth Top [m]: 1.20 WS103 Depth Base [m]: 2.00 Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Brown slightly gravelly sandy very clayey SILT

Sample Preparation: Sample was quartered, oven dried at 109.0 °C and broken down by hand.

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0586	81
300	100	0.0422	78
150	100	0.0304	74
125	100	0.0217	73
90	100	0.0157	68
75	100	0.0117	62
63	100	0.0016	34
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	99	Particle density	(assumed)
2	98	2.65	Mg/m3
1.18	98		
0.6	96]	
0.425	95]	
0.3	93		
0.212	91		
0.15	88		
0.063	81		

Sample Proportions	% dry mass
Very coarse	0
Gravel	2
Sand	17
Silt	44
Clay	37

Grading Analysis		
D100	mm	10
D60	mm	0.0099
D30	mm	
D10	mm	
Uniformity Coefficient		> 6.3
Curvature Coefficient		

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed: Marika

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Page 1 of 1

Buside

Date Reported: 18/10/2021

Particle Size Distribution

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990

Hydrock Consultants Ltd Client:

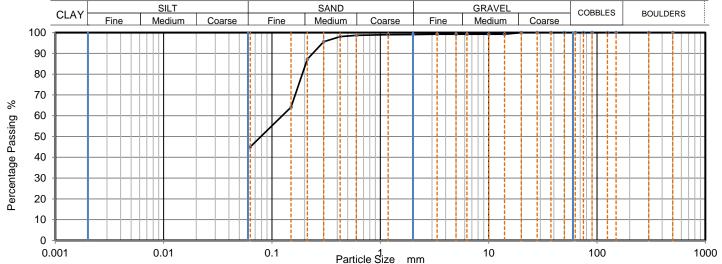
Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 20/09/2021


Sampled By: i2 - R.S

Test Results:

Laboratory Reference: 2006883 Depth Top [m]: 12.50 BH103 Depth Base [m]: 13.00 Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Brown very clayey SAND

Sample Preparation: Sample was quartered, oven dried at 106.9 °C and broken down by hand.

Siev	ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	99		
10	99		
6.3	99		
5	99		
3.35	99		
2	99		
1.18	99		
0.6	99		
0.425	98	1	
0.3	96	1	
0.212	87		
0.15	64	1	
0.063	45	1	

Sample Proportions	% dry mass
Very coarse	0
Gravel	1
Sand	54
Fines <0.063mm	45

Grading Analysis		
D100	mm	20
D60	mm	0.124
D30	mm	
D10	mm	
Uniformity Coefficient		> 2
Curvature Coefficient		

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377: Part 2:1990, clause 9.2

Remarks:

Signed: Marika

Buside

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 18/10/2021

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

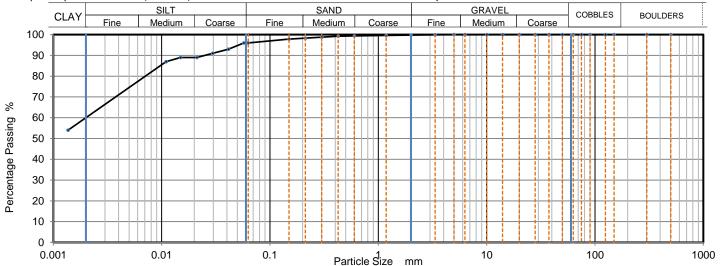
i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Hydrock Consultants Ltd Client Reference: C-19851-C
Client Address:

4 Lakeside, Festival Park,
Stoke on Trent, ST1 5RY

Date Sampled: Not Given
Date Received: 13/09/2021

Contact: Russell Sumner Date Received: 13/09/2021
Site Address: Garth Wymott 2 Sampled By: i2 - R.S


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:2011186Depth Top [m]: 15.50Hole No.:BH109Depth Base [m]: 15.95Sample Reference:Not GivenSample Type: U

Sample Description: Brown slightly sandy very silty CLAY

Sample Preparation: Sample was quartered, oven dried at 106.9 °C and broken down by hand.

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0575	96
300	100	0.0414	93
150	100	0.0296	91
125	100	0.0211	89
90	100	0.0149	89
75	100	0.0110	87
63	100	0.0014	54
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100	Particle density	(assumed)
2	100	2.65	Mg/m3
1.18	100		
0.6	99		
0.425	99		
0.3	99	1	
0.212	98		_
0.15	98	1	
0.063	96		

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	3
Silt	37
Clay	60

Grading Analysis		
D100	mm	5
D60	mm	0.002
D30	mm	
D10	mm	
Uniformity Coefficient		> 1.5
Curvature Coefficient		

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377: Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed:

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Date Reported: 18/10/2021

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Hydrock Consultants Ltd Client:

Client Address: 4 Lakeside, Festival Park,

Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021

Date Tested: 22/09/2021 Sampled By: i2 - R.S

Test Results:

Laboratory Reference: 2006885 Depth Top [m]: 0.30 WS103 Depth Base [m]: 0.70 Hole No.: Sample Reference: Not Given Sample Type: B Brown CLAY Sample Description:

Specimen Preparation:

Condition Remoulded Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface Amount of swell recorded

Material retained on 20mm sieve removed %

Initial Specimen details **Bulk density** 2.06 Mg/m3 Dry density 1.76 Mg/m3

> Moisture content 17

days mm Dry density after soaking Mg/m3

Surcharge applied kg 4.8 kPa

Force v Penetration Plots 2.50 2.00 - Top data · -· Top values Force Applied kN 1.50 · Top correction Base data 1.00 - • - · Base values **Base Correction** 0.50 0.00 6 3 5 7 Penetration mm

Results

TOP **BASE**

Curve	CBR Values, %			
correction applied	2.5mm	5mm	Highest	Average
No	8.1	8.3	8.3	8.7
No	8.9	9.0	9.0	0.7

Moisture Content % 17 17

Test/ Specimen Remarks: specific remarks:

> Signed: Hanks

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Buside

Date Reported: 18/10/2021

GF 108.15

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd

Client Address: 4 Lakeside, Festival Park,

Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 22/09/2021

Sampled By: i2 - R.S

Test Results:

Laboratory Reference: 2006886 Hole No.: WS102

Sample Reference: 2

Sample Description: Greyish brown CLAY

Depth Top [m]: 0.20 Depth Base [m]: 0.50

Sample Type: B

Not soaked

Specimen Preparation:

Initial Specimen details

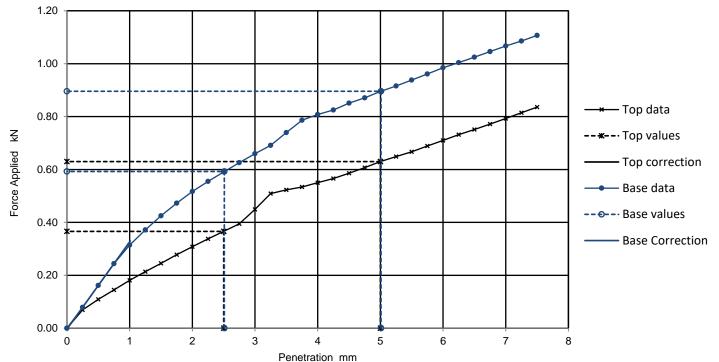
Condition Remoulded Soaking details

Details Recompacted with specified standard effort using 2.5kg rammer

Recompacted with specified standard effort using 2.5kg rammer

Period of soaking days
Time to surface days
Amount of swell recorded mm
Dry density after soaking Mg/m3

Material retained on 20mm sieve removed


0 %

Bulk density 1.98 Mg/m3
Dry density 1.65 Mg/m3

Moisture content 20 %

Surcharge applied 8 kg 4.9 kPa

Force v Penetration Plots

Results

TOP BASE

Curve	CBR Values, %			
correction applied	2.5mm	5mm	Highest	Average
No	2.8	3.2	3.2	
Yes	4.5	4.5	4.5	

Moisture Content % 20 20

Remarks:

Test/ Specimen specific remarks:

Signed:

Monika Janoszek PL Deputy Geotechnical Laboratory Manager

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Buside

for and on behalf of i2 Analytical Ltd

Date Reported: 18/10/2021 **GF 108.15**

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Mg/m3

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd

4 Lakeside, Festival Park,

Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 22/09/2021

Sampled By: i2 - R.S

Depth Top [m]: 0.80

Depth Base [m]: 0.80

Sample Type: B

resting carried out at 12 Arraytical Limited, til. Floritelow 35, 41 71 Florida Glaska, 1 V

Test Results:

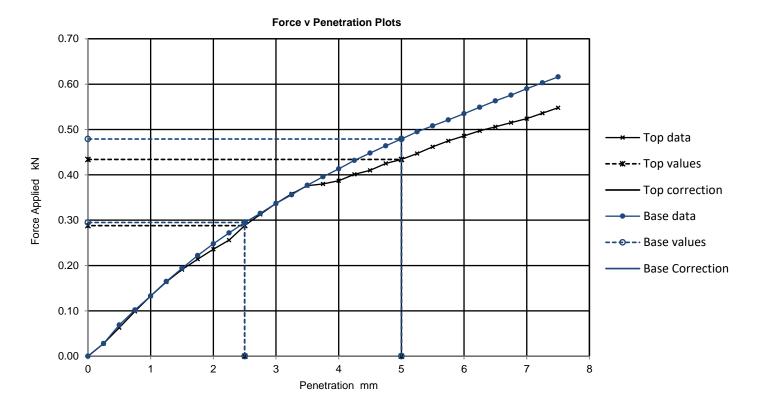
Client Address:

Laboratory Reference: 2006887 Hole No.: BH104 Sample Reference: Not Given

Sample Description: Greyish brown CLAY

Specimen Preparation:

Condition Remoulded Soaking details Not soaked


Details Recompacted with specified standard effort using 2.5kg rammer Period of soaking Time to surface days

Amount of swell recorded mm

Material retained on 20mm sieve removed 3 % Amount of swell recorded Dry density after soaking

Initial Specimen details Bulk density 2.01 Mg/m3 Surcharge applied 8 kg
Dry density 1.64 Mg/m3 4.9 kPa

Moisture content 23 %

Results

TOP BASE

Curve	CBR Values, %			
correction applied	2.5mm	5mm	Highest	Average
No	2.2	2.2	2.2	2.3
No	2.2	2.4	2.4	2.3

Moisture Content % 22 22

Remarks:

Signed:

Test/ Specimen

specific remarks:

Monika Janoszek
PL Deputy Geotechnical Laboratory Manager

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

for and on behalf of i2 Analytical Ltd

Date Reported: 18/10/2021 **GF 108.15**

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Hydrock Consultants Ltd Client:

4 Lakeside, Festival Park,

Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 22/09/2021

Sampled By: i2 - R.S

Depth Top [m]: 1.20

Depth Base [m]: 1.20

Sample Type: B

Test Results:

Client Address:

Laboratory Reference: 2006888 BH103 Hole No.: Sample Reference: Not Given

Greyish brown CLAY

Sample Description:

Specimen Preparation:

Material retained on 20mm sieve removed

Remoulded

Condition Details

Recompacted with specified standard effort using 2.5kg rammer

0 %

Initial Specimen details

Bulk density Dry density

Moisture content

2.06 1.71 20

Mg/m3 Mg/m3

Soaking details

Time to surface

Period of soaking

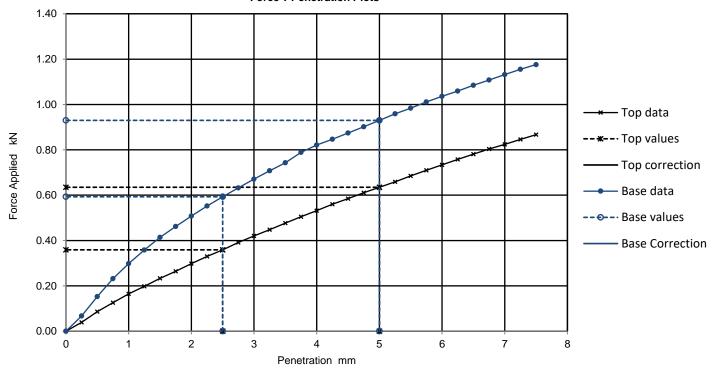
Amount of swell recorded

Dry density after soaking

Surcharge applied

kg 4.8 kPa

days


days

 mm

Mg/m3

Not soaked

Force v Penetration Plots

Results

TOP **BASE**

Curve	CBR Values, %			
correction applied	2.5mm	5mm	Highest	Average
No	2.7	3.2	3.2	
No	4.5	4.7	4.7	

Moisture Content % 19 20

Remarks:

Test/ Specimen specific remarks:

Signed: Hanks

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Bursible

Date Reported: 18/10/2021 GF 108.15

TEST CERTIFICATE Unconsolidated Undrained

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Hydrock Consultants Ltd

Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Site Address: Russell Sumner Garth Wymott 2

Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 16/09/2021 Sampled By: i2 - R.S

Depth Top [m]: 15.50

Depth Base [m]: 15.95

Sample Type: U

Test Results:

Laboratory Reference: 2006855 Hole No.: BH104 Sample Reference: Not Given

Sample Description: Greyish brown CLAY

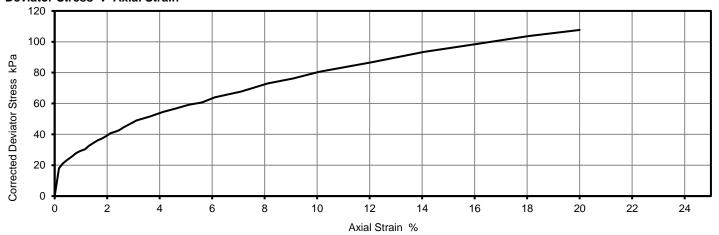
Test Number Length Diameter Bulk Density Moisture Content

Moisture Content
Dry Density
Membrane Correction

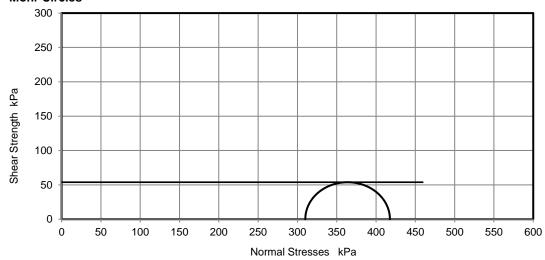
	_
1	
140.53	mm
69.30	mm
1.99	Mg/m3
29	%
1.53	Mg/m3
1.17	kPa

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure Membrane thickness


2.00	%/min
310	kPa
20.0	%
108	kPa

0.21


54 kPa ½(σ1-σ3)f

mm

Deviator Stress v Axial Strain

Mohr Circles

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Position within sample

Note: Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed:

Monika Janoszek PL Deputy Geotechnical Laboratory Manager

PL Deputy Geotechnical Laboratory Ma for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

 GF 184.11

TEST CERTIFICATE Unconsolidated Undrained

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client: Client Address:

4 Lakeside, Festival Park.

Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 16/09/2021 Sampled By: i2 - R.S

Test Results:

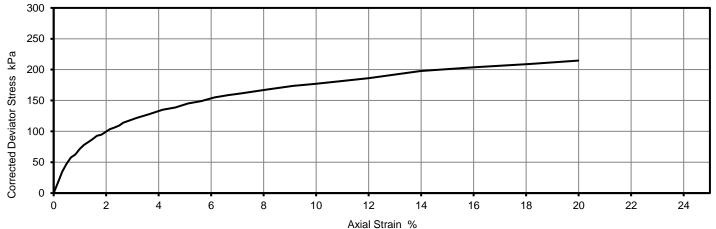
Laboratory Reference: 2006856 BH104 Hole No.: Sample Reference: Not Given

Sample Description: Greyish brown slightly sandy gravelly CLAY

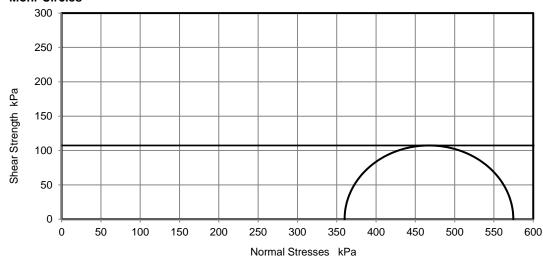
Depth Top [m]: 18.50 Depth Base [m]: 18.95 Sample Type: U

Test Number Lenath Diameter **Bulk Density** Moisture Content

Dry Density


100.74 mm 49.67 mm 2.24 Mg/m3 13 % 1.98 Mg/m3 2.17 Membrane Correction kPa

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu


Mode of Failure Membrane thickness 2.00 %/min 360 kPa 20.0 % 215 kPa 107 kPa

½(σ1 - σ3)f Plastic 0.28 mm

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Harika

Monika Janoszek PL Deputy Geotechnical Laboratory Manager

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Buside

Date Reported: 18/10/2021

GF 184.11

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client: Client Address:

4 Lakeside, Festival Park. Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

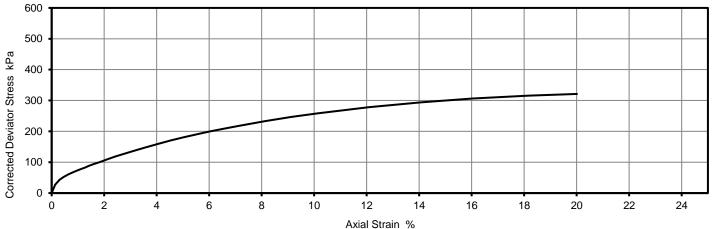
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 17/09/2021 Sampled By: i2 - R.S

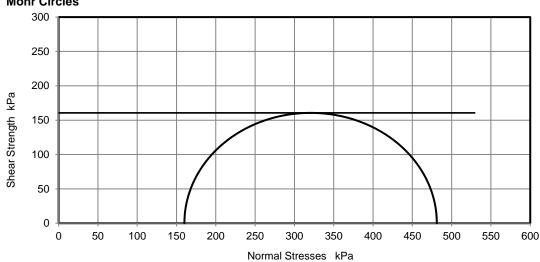
Test Results:

Laboratory Reference: 2006857 BH102 Hole No.: Sample Reference: Not Given

Sample Description: Brown slightly gravelly slightly sandy CLAY


Depth Top [m]: 8.00 Depth Base [m]: 8.45 Sample Type: U

Test Number 202.32 Lenath Diameter 101.21 **Bulk Density** 2.28 Moisture Content 14 2.00 Dry Density 0.84 Membrane Correction


Rate of Strain Cell Pressure mm Axial Strain at failure mm Mg/m3 Deviator Stress, (σ 1 - σ 3)f % Undrained Shear Strength, cu Mode of Failure Mg/m3 Membrane thickness kPa

1.98	%/min
160	kPa
20.0	%
321	kPa
161	kPa ½(σ1 - σ3)f
Plastic	
0.22	mm

Deviator Stress v Axial Strain

Mohr Circles

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Harika

Monika Janoszek PL Deputy Geotechnical Laboratory Manager

for and on behalf of i2 Analytical Ltd

Date Reported: 18/10/2021

Page 1 of 1

Buside

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

4 Lakeside, Festival Park. Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 17/09/2021 Sampled By: i2 - R.S

Test Results:

Laboratory Reference: 2006858 BH102 Hole No.: Sample Reference: Not Given

Sample Description: Brown slightly gravelly slightly sandy CLAY

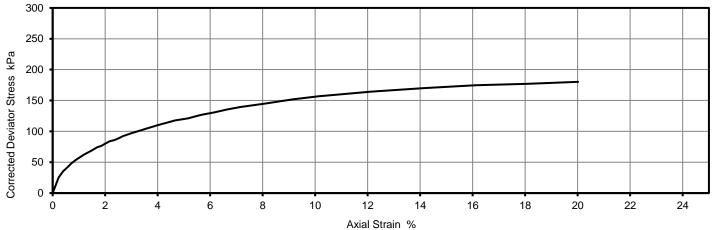
Depth Base [m]: 9.45 Sample Type: U

Test Number Lenath Diameter **Bulk Density** Moisture Content Dry Density

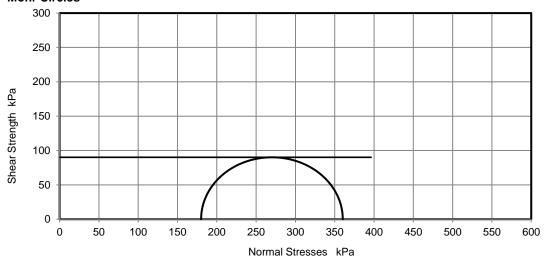
Membrane Correction

139.15 mm 69.69 mm 2.23 Mg/m3 15 % 1.93 Mg/m3 1.16 kPa

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu


Mode of Failure Membrane thickness

2.00	%/min
180	kPa
20.0	%
180	kPa
90	kPa ½(σ1


Depth Top [m]: 9.00

- σ3)f Plastic 0.21

Deviator Stress v Axial Strain

Mohr Circles

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Marika

Monika Janoszek PL Deputy Geotechnical Laboratory Manager

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Buside

Date Reported: 18/10/2021 GF 184.11

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client: Client Address:

4 Lakeside, Festival Park. Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 17/09/2021 Sampled By: i2 - R.S

Test Results:

Test Number

Bulk Density

Dry Density

Moisture Content

Lenath

Diameter

Laboratory Reference: 2006859 BH108 Hole No.: Sample Reference: Not Given

Sample Description: Brown slightly gravelly sandy CLAY

> 202.48 mm 98.80 mm 2.22 Mg/m3 20 %

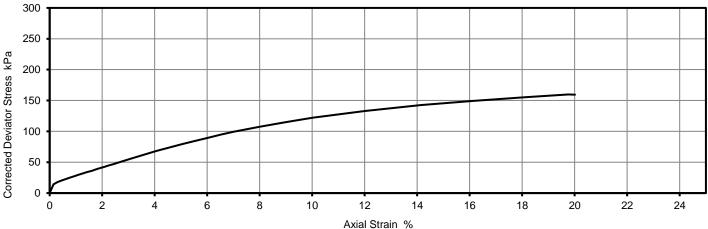
1.85 Mg/m3 0.85 Membrane Correction kPa

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

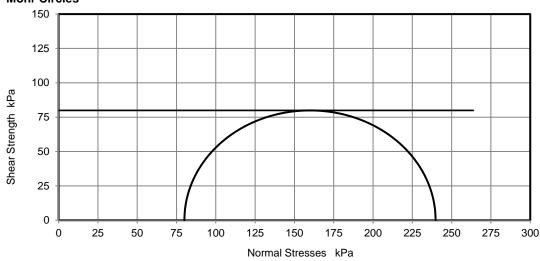
Mode of Failure Membrane thickness

	_
1.98	%/min
80	kPa
19.8	%
160	kPa

Depth Top [m]: 4.00


Depth Base [m]: 4.45

Sample Type: U


80 kPa ½(σ1 - σ3)f Plastic

0.22 mm

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Harika

Monika Janoszek PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Page 1 of 1

Buside

Date Reported: 18/10/2021

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

4 Lakeside, Festival Park.

Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 17/09/2021 Sampled By: i2 - R.S

Test Results:

Test Number

Bulk Density

Dry Density

Moisture Content

Lenath

Diameter

Client Address:

Laboratory Reference: 2006860 BH103 Hole No.: Sample Reference: Not Given

Sample Description: Brown slightly gravelly slightly sandy CLAY

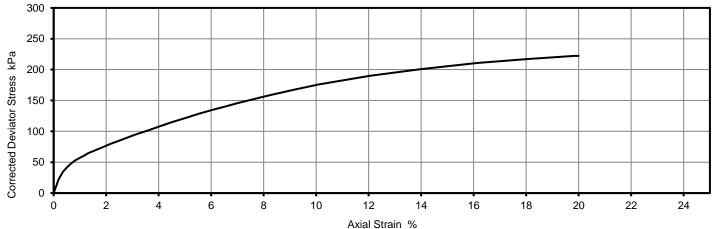
> 204.40 mm 102.44 mm 2.23 Mg/m3 14 % 1.95 Mg/m3

1.05 Membrane Correction kPa Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

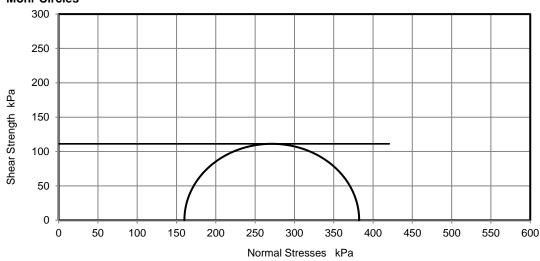
Mode of Failure Membrane thickness

	_
1.96	%/min
160	kPa
19.9	%
222	kPa

Depth Top [m]: 8.00


Depth Base [m]: 8.45

Sample Type: U


111 kPa ½(σ1 - σ3)f Plastic

0.28 mm

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Harika

Monika Janoszek PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Page 1 of 1

Buside

Date Reported: 18/10/2021 GF 184.11

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

4 Lakeside, Festival Park. Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 17/09/2021 Sampled By: i2 - R.S

Test Results:

Laboratory Reference: 2006861 BH106 Hole No.: Sample Reference: Not Given

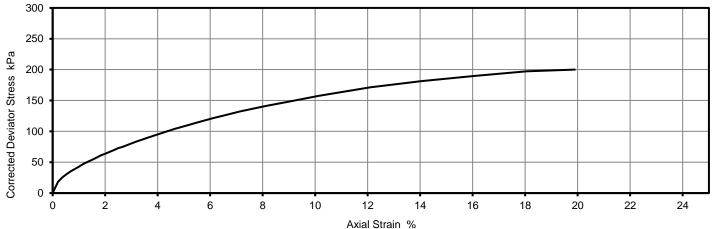
Sample Description: Brown slightly gravelly slightly sandy CLAY

Depth Top [m]: 9.50 Depth Base [m]: 9.95 Sample Type: U

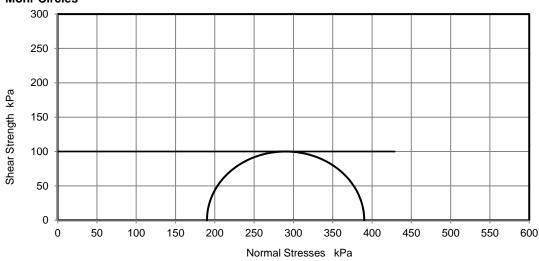
Test Number Lenath Diameter **Bulk Density** Moisture Content Dry Density

Membrane Correction

201.85 mm 100.87 mm 2.24 Mg/m3 11 % 2.02 Mg/m3 0.95 kPa


Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure Membrane thickness


	_
1.98	%/min
190	kPa
19.9	%
200	kPa
100	kPa ½(σ1 - σ3)f

Compound 0.25

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Marika

Monika Janoszek PL Deputy Geotechnical Laboratory Manager

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Buside

Date Reported: 18/10/2021

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client: Client Address:

4 Lakeside, Festival Park. Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 17/09/2021 Sampled By: i2 - R.S

Depth Top [m]: 12.50

Depth Base [m]: 12.95

Sample Type: U

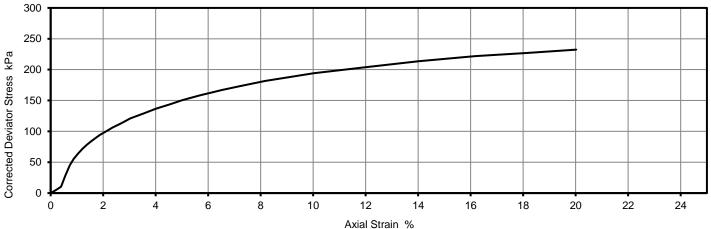
Test Results:

Laboratory Reference: 2006862 BH106 Hole No.: Sample Reference: Not Given

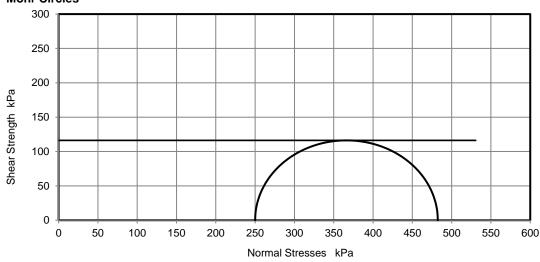
Sample Description: Brown slightly gravelly slightly sandy CLAY

Test Number 139.97 Lenath mm Diameter 69.90 mm **Bulk Density** 2.18 Mg/m3 Moisture Content 14 % 1.91 Dry Density Mg/m3 Membrane Correction

1.27 kPa Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu


Mode of Failure Membrane thickness

	_
2.00	%/min
250	kPa
20.0	%
232	kPa


116 kPa ½(σ1 - σ3)f Plastic

0.23 mm

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Harika

Monika Janoszek PL Deputy Geotechnical Laboratory Manager

for and on behalf of i2 Analytical Ltd Buside

Page 1 of 1

Date Reported: 18/10/2021

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Hydrock Consultants Ltd

Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 17/09/2021 Sampled By: i2 - R.S

Test Results:

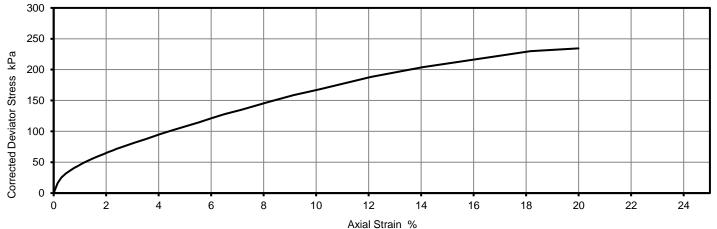
Laboratory Reference: 2006863 Hole No.: BH105 Sample Reference: Not Given

Sample Description: Brown slightly gravelly slightly sandy CLAY

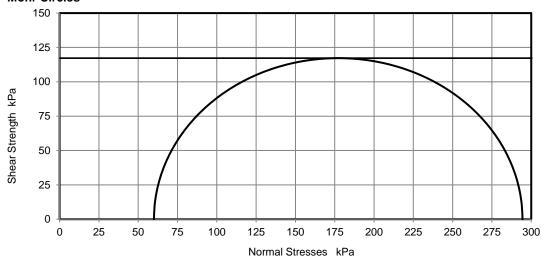
Depth Top [m]: 3.00 Depth Base [m]: 3.45 Sample Type: U

Test Number Length Diameter Bulk Density Moisture Content Dry Density

Membrane Correction


1 mm
102.03 mm
102.03 mm
2.17 Mg/m3
19 %
1.83 Mg/m3
1.02 kPa

Rate of Strain
Cell Pressure
Axial Strain at failure
Deviator Stress, (\sigma 1 - \sigma 3)f
Undrained Shear Strength, cu
Mode of Failure


Membrane thickness

1.97	%/min
60	kPa
20.0	%
234	kPa
117	kPa ½(σ1 - σ3)f
Plastic	
0.27	mm

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Note: Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed:

Monika Janoszek
PL Deputy Geotechnical Laboratory Manager

FL Deputy Geotechnical Laboratory Mana for and on behalf of i2 Analytical Ltd

Page 1 of 1

Buside

Date Reported: 18/10/2021

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client: Client Address:

4 Lakeside, Festival Park. Stoke on Trent, ST1 5RY

Contact: Russell Sumner

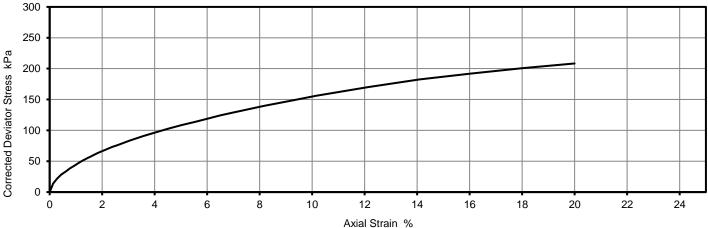
Site Address: Garth Wymott 2 Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 17/09/2021 Sampled By: i2 - R.S

Depth Top [m]: 6.50

Test Results:

Laboratory Reference: 2006864 BH105 Hole No.: Sample Reference: Not Given

Sample Description: Brown slightly gravelly slightly sandy CLAY Depth Base [m]: 6.95 Sample Type: U


Test Number Lenath Diameter **Bulk Density** Moisture Content Dry Density Membrane Correction

202.89 mm 101.62 mm 2.24 Mg/m3 15 % 1.95 Mg/m3 0.87 kPa


Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu Mode of Failure Membrane thickness

1.97 %/min 130 kPa 20.0 % 208 kPa 104 kPa ½(σ1 - σ3)f Plastic 0.23 mm

Deviator Stress v Axial Strain

Mohr Circles

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Marika

Monika Janoszek PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing. Buside

Date Reported: 18/10/2021

Page 1 of 1

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

4 Lakeside, Festival Park. Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 17/09/2021 Sampled By: i2 - R.S

Test Results:

Laboratory Reference: 2006865 BH107A Hole No.: Sample Reference: Not Given

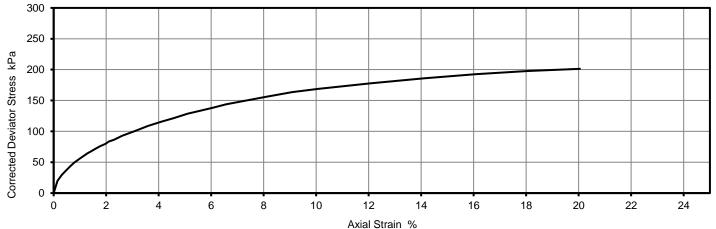
Brown slightly gravelly very sandy CLAY Sample Description:

Depth Top [m]: 6.50 Depth Base [m]: 6.95 Sample Type: U

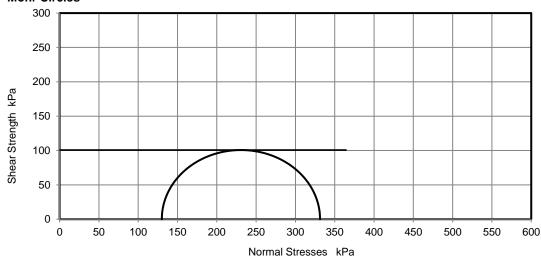
Test Number Lenath Diameter **Bulk Density** Moisture Content Dry Density

Membrane Correction

139.77 mm 69.47 mm 2.20 Mg/m3 17 % 1.87 Mg/m3 1.61 kPa

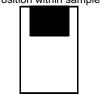

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure Membrane thickness


2.00	%/min
130	kPa
20.0	%
201	kPa
101	kPa ½(σ1 - σ3)f

Plastic 0.29

Deviator Stress v Axial Strain



Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Harika

Monika Janoszek PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Buside Page 1 of 1

Date Reported: 18/10/2021

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client: Client Address:

4 Lakeside, Festival Park. Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 17/09/2021 Sampled By: i2 - R.S

Test Results:

Lenath

Diameter

Laboratory Reference: 2006866 BH101 Hole No.: Sample Reference: Not Given

Sample Description: Brown slightly sandy CLAY

Test Number 139.66 mm 69.67 mm **Bulk Density** 2.07 Mg/m3 Moisture Content 22 %

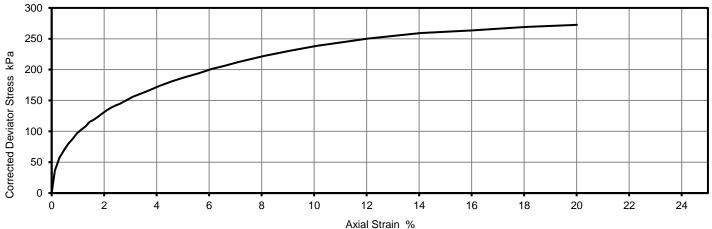
1.69 Dry Density Mg/m3 1.55 Membrane Correction kPa

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

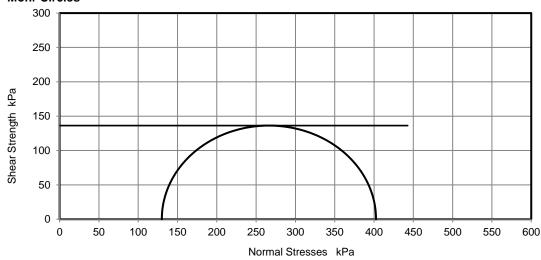
Mode of Failure Membrane thickness

	_
2.00	%/min
130	kPa
20.0	%
273	kPa

Depth Top [m]: 6.50

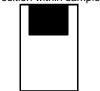

Depth Base [m]: 6.95

Sample Type: U


136 kPa ½(σ1 - σ3)f

Plastic 0.28 mm

Deviator Stress v Axial Strain



Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Marika

Monika Janoszek PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Page 1 of 1

Buside

Date Reported: 18/10/2021

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

4 Lakeside, Festival Park. Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 17/09/2021 Sampled By: i2 - R.S

Test Results:

Laboratory Reference: 2006867 BH101 Hole No.: Sample Reference: Not Given

Sample Description: Brown slightly gravelly slightly sandy CLAY

Depth Top [m]: 17.00 Depth Base [m]: 17.45 Sample Type: U

%/min

½(σ1 - σ3)f

kPa

%

Test Number Lenath Diameter **Bulk Density** Moisture Content Dry Density

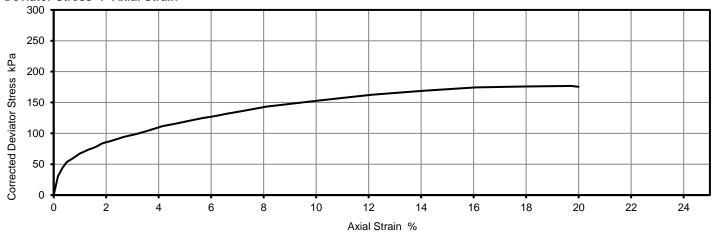
Membrane Correction

139.49 mm 69.47 mm 2.03 Mg/m3 23 % 1.65 Mg/m3 1.53 kPa

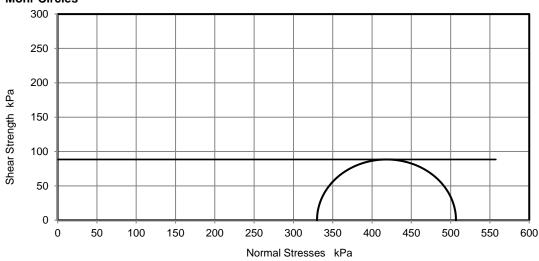
Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu Mode of Failure

Membrane thickness

177 kPa 88 kPa Compound


2.00

330


19.7

0.28 mm

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Harika

Monika Janoszek PL Deputy Geotechnical Laboratory Manager

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Buside

Date Reported: 18/10/2021

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client: Client Address:

4 Lakeside, Festival Park. Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 20/09/2021 Sampled By: i2 - R.S

Test Results:

Laboratory Reference: 2011183 BH109 Hole No.: Sample Reference: Not Given

Sample Description: Greyish brown slightly gravelly sandy CLAY

Test Number 140.34 Lenath mm Diameter 69.15 mm **Bulk Density** 2.19 Mg/m3 Moisture Content 18 % 1.86 Dry Density Mg/m3 1.56 Membrane Correction kPa

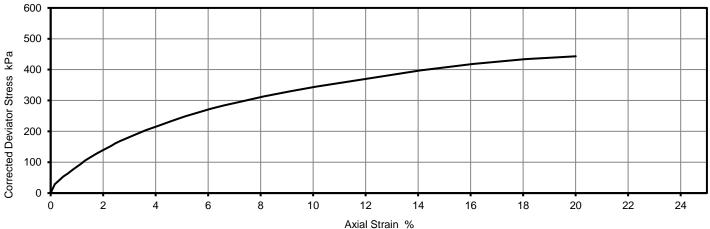
Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure Membrane thickness

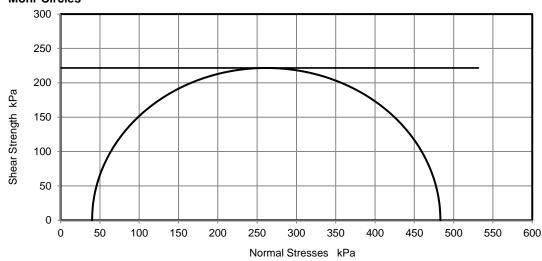
2.00	%/min
40	kPa
20.0	%
443	kPa
	-

0.28

Depth Top [m]: 2.00


Depth Base [m]: 2.45

Sample Type: U


kPa ½(σ1 - σ3)f Plastic

mm

Deviator Stress v Axial Strain

Mohr Circles

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Marika

Monika Janoszek PL Deputy Geotechnical Laboratory Manager

Buside

for and on behalf of i2 Analytical Ltd

Date Reported: 18/10/2021

Page 1 of 1

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Hydrock Consultants Ltd

Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C
Job Number: 21-98690
Date Sampled: Not Given
Date Received: 13/09/2021
Date Tested: 20/09/2021
Sampled By: i2 - R.S

Test Results:

Laboratory Reference: 2011184
Hole No.: BH109
Sample Reference: Not Given

Sample Description: Greyish brown slightly sandy gravelly CLAY

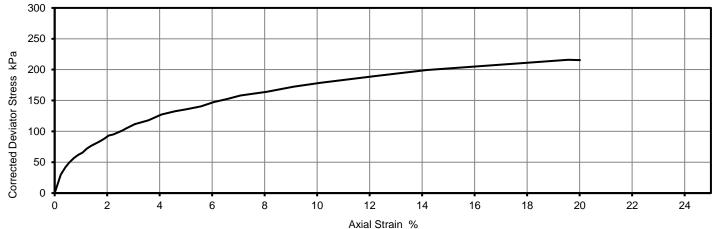
Depth Top [m]: 18.50 Depth Base [m]: 18.95 Sample Type: U

Test Number Length Diameter Bulk Density Moisture Content Dry Density

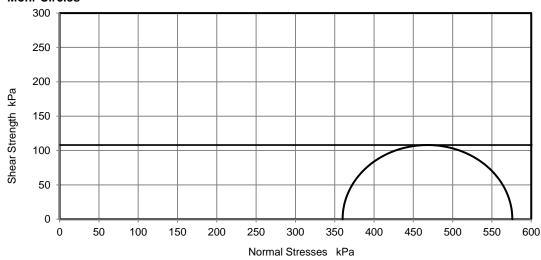
Membrane Correction

1 98.89 mm
49.74 mm
2.28 Mg/m3
13 %
2.02 Mg/m3
2.20 kPa

Cell Pressure
Axial Strain at failure
Deviator Stress, (σ1 - σ3)f
Undrained Shear Strength, cu


Mode of Failure Membrane thickness

Rate of Strain


2.00	%/min
360	kPa
19.6	%
216	kPa
108	kPa ½(σ

108 kPa ½(σ1 - σ3)f
Plastic
0.29 mm

Deviator Stress v Axial Strain

Mohr Circles

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Position within sample

Note: Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed:

Monika Janoszek
PL Deputy Geotechnical Laboratory Manager
for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Data Banartadi, 19/10/2021

Page 1 of 1

Date Reported: 18/10/2021

Summary of Point Load Strength Index Tests Results

Tested in Accordance with: ISRM: 2007, pages 125-132

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: C-19851-C

Job Number: 21-98690 Date Sampled: Not Given

Date Received: 13/09/2021

Date Tested: 23/09 - 15/10/2021

Sampled By: i2 - R.S

Client:

Client Address: 4 Lakeside, Festival Park,

Hydrock Consultants Ltd

Stoke on Trent, ST1 5RY

Russell Sumner Contact: Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

		Sample		висе			Test Type see ISRM		Dimensions					De 1		t Load th Index			
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks # (including water content if measured)	Specimen Reference	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne	W	Dps	Dps'	Force P kN	Equivalent diameter, De	Is MPa	Is(50) MPa
2006889	BH106	Not Given	24.45	24.65	С	Brown SILTSTONE	WC = 13.6%	1	Α	U	YES	-	85.8	46.0	39.0	0.4	65.3	0.09	0.11
2006893	BH106	Not Given	25.60	25.70	С	Brown to grey stiff CLAY	WC = 17.0%	1	А	Р	YES	-	84.8	61.0	55.0	0.4	77.1	0.06	0.07
2006894	BH106	Not Given	26.00	26.29	С	Brown to grey stiff CLAY	WC = 13.5%	1	А	Р	YES	-	85.9	49.0	45.0	0.3	70.2	0.06	0.07
2006894	BH106	Not Given	26.00	26.29	С	Brown to grey stiff CLAY	WC = 13.5%	2	Α	Р	YES	-	85.7	35.0	30.0	0.3	57.2	0.08	0.08
2006895	BH106	Not Given	27.35	27.50	С	Brown to grey SILTSTONE	WC = 9.3%	1	Α	Р	YES	-	86.1	52.0	41.0	0.9	67.0	0.19	0.22
2006895	BH106	Not Given	27.35	27.50	С	Brown to grey SILTSTONE	WC = 9.3%	2	Α	Р	YES	-	86.2	31.0	25.0	0.6	52.4	0.22	0.22
2006890	BH106	Not Given	28.68	28.68	С	Brown to grey SILTSTONE	WC = 11.3%	1	Α	Р	YES	-	85.8	71.0	56.0	0.4	78.2	0.07	0.08
2006891	BH106	Not Given	29.15	29.25	С	Brown SILTSTONE	WC = 8.8%	1	А	U	YES	-	86.3	72.0	68.0	0.2	86.4	0.03	0.03
2006892	BH106	Not Given	30.60	30.81	С	Brown to grey SILTSTONE	WC = 15.0%	1	Α	U	YES		86.4	60.0	38.0	0.5	64.7	0.12	0.13
2006896	BH106	Not Given	31.65	31.81	С	Brown to grey SILTSTONE	WC = 14.7%	1	А	Р	YES	-	86.3	54.0	47.0	0.2	71.9	0.04	0.05

Note: # non accredited; Test Type: D - Diametral, A - Axial, I - Irregular Lump, B - Block; Direction: L - parallel to planes of weakness, P - perpendicular to planes of weakness, U - unknown or random; Dimensions: Dps - Distance between platens (platen separation), Dps' - at failure (see ISRM note 6), Lne - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P; Detailed legend for test and dimensions, based on ISRM, is shown above; Size factor, F = (Del50)0.45 for all tests

Comments:

Signed:

Marika

Monika Janoszek PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

GF 134.12 Page 1 of 1 Date Reported: 18/10/2021

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Summary of Point Load Strength Index Tests Results

Tested in Accordance with: ISRM: 2007, pages 125-132

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: C-19851-C

Job Number: 21-98690

Date Sampled: Not Given
Date Received: 13/09/2021

Date Tested: 15/10/2021

Sampled By: i2 - R.S

Client: Hydrock Consultants Ltd Client Address:

4 Lakeside, Festival Park, Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

		Sample				ence		Test Type see ISRM		Dimensions			t (nt De		t Load th Index			
Laboratory Hole Reference No.		Reference	Depth Top m	Depth Base m	Туре	Description	Remarks # (including water content if measured)	Specimen Reference	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne	W	Dps	Dps'	Force P kN	Equivalent diameter, De	Is MPa	Is(50) MPa
2006896	BH106	Not Given	31.65		С	Brown to grey SILTSTONE	WC = 14.7%	2	Α	Р	YES	-	86.1	41.0	32.0	0.1	59.2	0.03	0.03

Note: # non accredited; Test Type: D - Diametral, A - Axial, I - Irregular Lump, B - Block; Direction: L - parallel to planes of weakness, P - perpendicular to planes of weakness, U - unknown or random; Dimensions: Dps - Distance between platens (platen separation), Dps' - at failure (see ISRM note 6), Lne - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P; Detailed legend for test and dimensions; based on ISRM, is shown above, Eizo factor, F = (DeS)01,45 for all tests

Comments:

Signed:

Marika

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

DETERMINATION OF THE ONE-DIMENSIONAL CONSOLIDATION PROPERTIES

Tested in Accordance with: BS 1377-5:1990: Clause 3

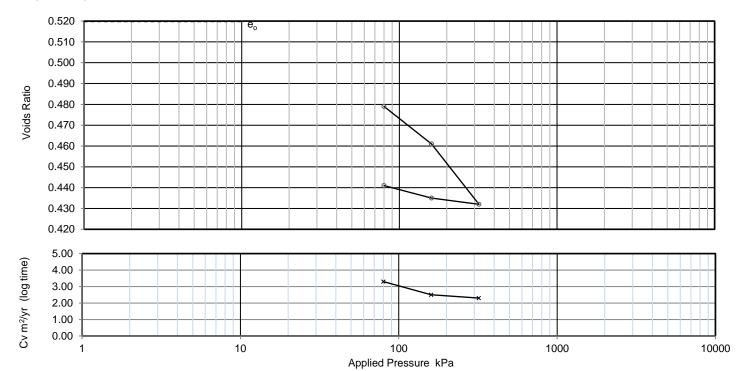
i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Hydrock Consultants Ltd

Client Address: 4 Lakeside, Festival Park,

Stoke on Trent, ST1 5RY

Russell Sumner Contact: Site Address: Garth Wymott 2


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C Job Number: 21-98690 Date Sampled: Not Given Date Received: 13/09/2021 Date Tested: 16/09/2021 Sampled By: i2 - R.S

Test Results:

Laboratory Reference: 2006859 Depth Top [m]: 4.00 BH108 Hole No .: Depth Base [m]: 4.45 Not Given Sample Type: U Sample Reference:

Brown slightly gravelly sandy CLAY Sample Description:

Applied Pressure	Voids ratio	Mv	Cv (t50, log)	Cv (t90, root	Csec
kPa		m2/MN	m2/yr	m2/yr	
0	0.520	1	-	-	-
80	0.479	0.34	3.3	5.2	0.00064
160	0.461	0.15	2.5	2.5	0.00093
320	0.432	0.12	2.3	1.9	0.0013
160	0.435	0.013			
80	0.441	0.054			

Preparation

Sample squeezed out of core

Vertical assumed

N/A

N/A

Initial

2.65

Final

Mg/m3

%

%

mm

mm

Mg/m3

Mg/m3

% °C

kPa

days

GF 172.16

%

Index tests
Orientation of the sample
Particle density
Liquid limit

Plastic limit

Swelling Pressure

Total test time

Settlement on saturation

Specimen details	
Diameter	
Height	
Moisture Content	
Bulk density	
Dry density	
Voids Ratio	
Saturation	
Avg. temperature for test	

50.06	-			
20.03	19.00			
21	19			
2.11	2.19			
1.74	1.84			
0.520	0.44			
108	115			
22.0				
Not measured				

5

Note: Cv corrected to 20°C

Remarks:

Signed: Marika

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Buside

Date Reported: 18/10/2021

DETERMINATION OF THE ONE-DIMENSIONAL CONSOLIDATION PROPERTIES

Tested in Accordance with: BS 1377-5:1990: Clause 3

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

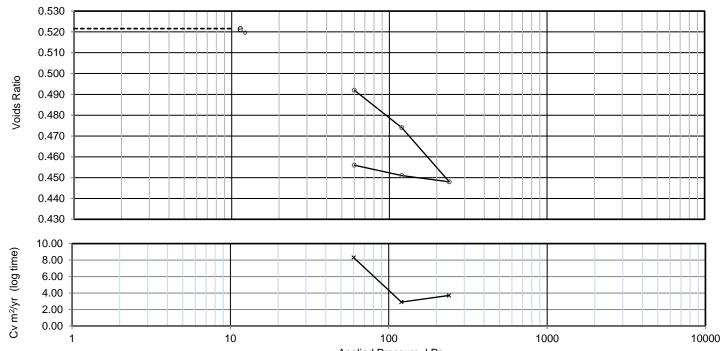
4041

Client: Hydrock Consultants Ltd

Client Address: 4 Lakeside, Festival Park,

Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C
Job Number: 21-98690
Date Sampled: Not Given
Date Received: 13/09/2021
Date Tested: 16/09/2021
Sampled By: i2 - R.S

Test Results:

Laboratory Reference:2006863Depth Top [m]: 3.00Hole No.:BH105Depth Base [m]: 3.45Sample Reference:Not GivenSample Type: U

Sample Description: Brown slightly gravelly slightly sandy CLAY

ressure	kPa
	ressure

Applied Pressure	Voids ratio	Mv	Cv (t50, log)	Cv (t90, root	Csec
kPa		m2/MN	m2/yr	m2/yr	
0	0.522	-	-	-	-
60	0.492	0.32	8.3	13	0.00062
120	0.474	0.2	2.9	6.9	0.0008
240	0.448	0.15	3.7	6.9	0.0013
120	0.451	0.017			
60	0.456	0.06			

Preparation

Sample squeezed out of core

Index tests

Orientation of the sample Particle density Liquid limit Plastic limit

Specimen details
Diameter
Height
Moisture Content
Bulk density
Dry density
Voids Ratio
Saturation

Avg. temperature for test Swelling Pressure Settlement on saturation Total test time

verticai		_
assumed	2.65	Mg/m3
N/A		%
N/A		%

Initial	Final	
50.05		mm
20.09	19.22	mm
19	19	%
2.08	2.16	Mg/m3
1.74	1.82	Mg/m3
0.522	0.456	
98	108	%
22	°C	
Not me	kPa	
	%	
į	5	days

Note: Cv corrected to 20°C

Remarks:

Signed:

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Junkile for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Date Reported: 18/10/2021

GF 172.16

DETERMINATION OF THE ONE-DIMENSIONAL CONSOLIDATION PROPERTIES

Tested in Accordance with: BS 1377-5:1990: Clause 3

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

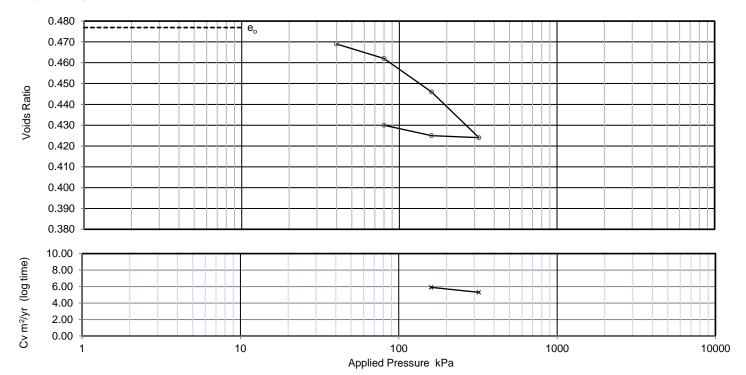
4041

Client: Hydrock Consultants Ltd

Client Address: 4 Lakeside, Festival Park,

Stoke on Trent, ST1 5RY

Contact: Russell Sumner Site Address: Garth Wymott 2


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-19851-C
Job Number: 21-98690
Date Sampled: Not Given
Date Received: 13/09/2021
Date Tested: 16/09/2021
Sampled By: i2 - R.S

Test Results:

Laboratory Reference:2011183Depth Top [m]: 2.00Hole No.:BH109Depth Base [m]: 2.45Sample Reference:Not GivenSample Type: U

Sample Description: Greyish brown slightly gravelly sandy CLAY

Applied Pressure	Voids ratio	Μv	Cv (t50, log)	Cv (t90, root	Csec
kPa	Tatio	m2/MN	m2/yr	m2/yr	
0	0.477	-	-	-	-
40	0.469	0.13	N/A	N/A	N/A
80	0.462	0.12	N/A	11	N/A
160	0.446	0.14	5.9	11	0.00062
320	0.424	0.097	5.3	12	0.0011
160	0.425	0.0052			
80	0.430	0.046			

Preparation

Sample squeezed out of core

Index tests

Orientation of the sample Particle density Liquid limit

Liquid limit Plastic limit

Specimen details
Diameter
Height
Moisture Content
Bulk density
Dry density
Voids Ratio
Saturation
Avg. temperature for test

Swelling Pressure
Settlement on saturation
Total test time

Vertical		_
assumed	2.65	Mg/m3
N/A		%
N/A		%

Initial	Final	
50.00	-	mm
20.10	19.46	mm
17	18	%
2.11	2.19	Mg/m3
1.79	1.85	Mg/m3
0.477	0.430	
96	111	%
22	°C	
Not me	kPa	
	%	
Ę	5	days

Note: Cv corrected to 20°C

Remarks: stage1-swelling

Signed:

Monika Janoszek

PL Deputy Geotechnical Laboratory Manager for and on behalf of i2 Analytical Ltd

Junkile for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Date Reported: 18/10/2021

GF 172.16

Russell Sumner

Hydrock Consultants Ltd 4 Lakeside Festival Park Stoke on Trent ST1 5RY

t: 01782 261919 **f:** 01782 262020

e: Russellsumner@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-98695

Project / Site name: Garth Wymott 2 Samples received on: 13/09/2021

Your job number: C-19851-C Samples instructed on/ 13/09/2021

Analysis started on:

Your order number: PO09572 Analysis completed by: 24/09/2021

Report Issue Number: 1 **Report issued on:** 24/09/2021

Samples Analysed: 2 soil samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-98695 Project / Site name: Garth Wymott 2

Your Order No: PO09572

Lab Sample Number				2006918	2006919
Sample Reference				WS102	WS102
Sample Number				4	6
Depth (m)				2.00-2.45	1.65-1.65
Date Sampled					
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	14	16
Total mass of sample received	kg	0.001	NONE	0.30	0.50

General Inorganics

	Organic Matter (automated)	%	0.1	MCERTS	1.2	1.2
--	----------------------------	---	-----	--------	-----	-----

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 21-98695 Project / Site name: Garth Wymott 2

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2006918	WS102	4	2.00-2.45	Brown clay.
2006919	WS102	6	1.65-1.65	Brown clay.

Analytical Report Number: 21-98695 Project / Site name: Garth Wymott 2

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

LWD results sheets

Determination of Dynamic Plate test

Tested in accordance with In House Procedure based upon SHW Design manual IAN73/06

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: Hydrock Consultants Ltd.
Client Address: Over Court Barn, Over Lane,

Almondsbury

Bristol

Client Postcode: BS32 4DF

Contact: Russell Sumner

Testing Carried Out At: Land off Pump house lane, Layland, P26 8NH

Client Reference: PO09000

Job Number: 21-94483_1

Date Tested: 24/08/2021

Various

Tested By: MC

Location:

Weather Conditions: Cloudy
Plate Diameter: 300

Equipment ID: 12-1318

Test Results:

SSF125.4

Test Location	Client Reference	Source / Supplier	Description	Evd (MPa)	Estimated CBR (%)
CBR120	LWD 1	Unknown	Brown/red CLAY	26.8	1.9
CBR 118	LWD 2	Unknown	Brown/red CLAY	30.0	2.3
CBR 116	LWD 3	Unknown	Brown/red CLAY	27.6	2.0
CBR 117	LWD 4	Unknown	Brown/red CLAY	25.6	1.8
CBR 115	LWD 5	Unknown	Brown/red CLAY	29.0	2.2
CBR 119	LWD 6	Unknown	Brown/red CLAY	28.5	2.1

Signed:

Craig Hawkes

Site Services Operations Supervisor

for and on behalf of i2 Analytical Ltd

Date Reported: 31/08/2021 Page: 1 of 1

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

Determination of Dynamic Plate test

Tested in accordance with In House Procedure based upon SHW Design manual IAN73/06

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: Hydrock Consultants Ltd.
Client Address: Over Court Barn, Over Lane,

Almondsbury

Bristol

Client Postcode: BS32 4DF
Contact: Russell Sumner

Testing Carried Out At: Land off Pump house lane, Layland, P26 8NH

Client Reference: PO09000

Job Number: 21-94764_1

Date Tested: 25/08/2021

Various

Tested By: MC

Location:

Weather Conditions: Sunny Plate Diameter: 300

Equipment ID: 12-1318

Test Results:

Test Location	Client Reference	Source / Supplier	Description	Evd (MPa)	Estimated CBR (%)
CBR 105	LWD 1	Unknown	Brown CLAY	17.3	1.0
CBR 106	LWD 2	Unknown	Dark brown CLAY	23.8	1.6
CBR 103	LWD 3	Unknown	Dark brown CLAY	24.2	1.6
CBR 104	LWD 4	Unknown	Grey sandy CLAY	20.3	1.2
CBR 112	LWD 5	Unknown	Dark brown CLAY	25.1	1.7
CBR 107	LWD 6	Unknown	Grey sandy CLAY	26.1	1.9
CBR 113	LWD 7	Unknown	Yellow/grey CLAY	12.9	0.6
CBR 108	LWD 8	Unknown	Grey sandy CLAY	14.0	0.7
CBR 109	LWD 9	Unknown	Slight gravel brown CLAY	49.5	5.0
CBR 101	LWD 10	Unknown	Dark brown CLAY	23.1	1.5
CBR 110	LWD 11	Unknown	Dark brown CLAY	15.1	0.8
CBR 114	LWD 12	Unknown	Dark brown CLAY	25.0	1.7
CBR 111	LWD 13	Unknown	Clayey SAND	37.1	3.2
CBR 102	LWD 14	Unknown	Dark grey CLAY	41.2	3.8
CBR 121	LWD 15	Unknown	Dark grey CLAY	22.6	1.5

Signed:

Craig Hawkes

Site Services Operations Supervisor

for and on behalf of i2 Analytical Ltd

SSF125.4

Date Reported: 31/08/2021

Page: 1 of 1

Determination of Dynamic Plate test

Tested in accordance with In House Procedure based upon SHW Design manual IAN73/06

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: Hydrock Consultants Ltd. Client Address:

Over Court Barn, Over Lane,

Almondsbury

Bristol

BS32 4DF Client Postcode:

Contact: Russell Sumner

Testing Carried Out At: Land off Pump house lane, Layland, P26 8NH

Client Reference:

PO09000

Job Number:

21-94764_2

Date Tested: 25/08/2021

Location: Various

Tested By: MC

Weather Conditions: Sunny

Plate Diameter: 300

Equipment ID: 12-1318

Test Results:

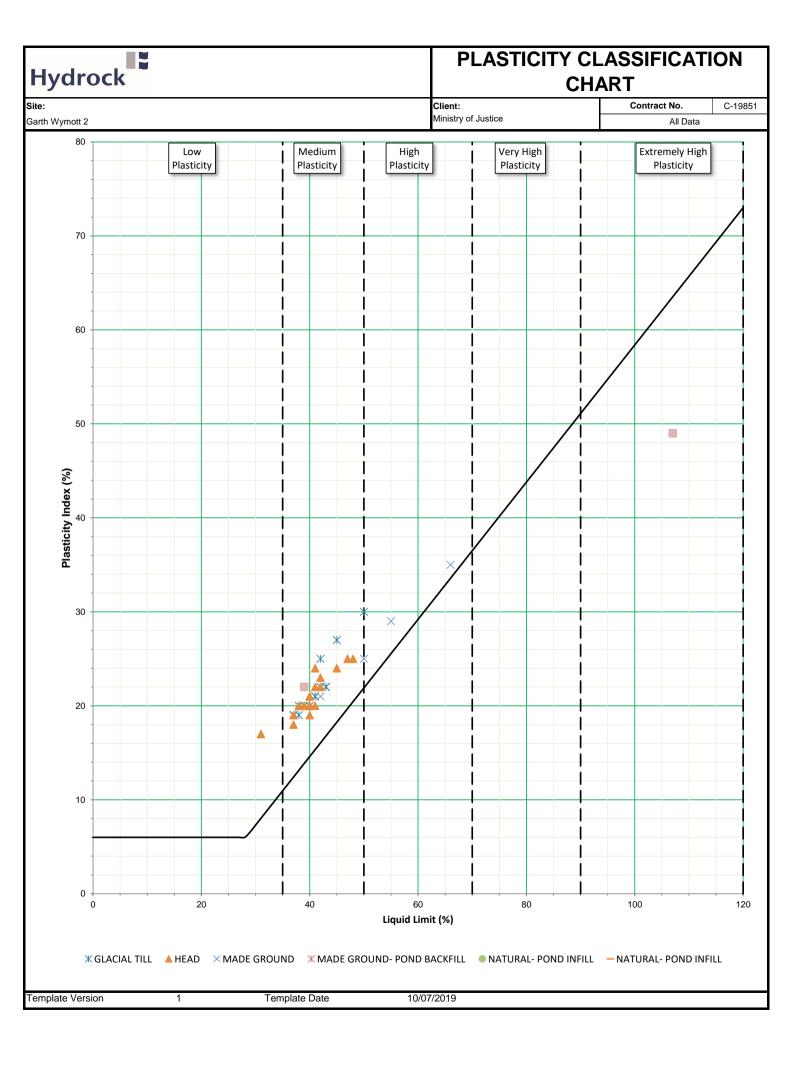
SSF125.4

Test Location	Client Reference	Source / Supplier	Description	Evd (MPa)	Estimated CBR (%)
CBR 122	LWD 16	Unknown	Dark grey CLAY	24.9	1.7
CBR 124	LWD 17	Unknown	Dark grey CLAY	25.1	1.7
CBR 123	LWD 18	Unknown	Dark grey CLAY	20.1	1.2

Signed:

Craig Hawkes

Site Services Operations Supervisor

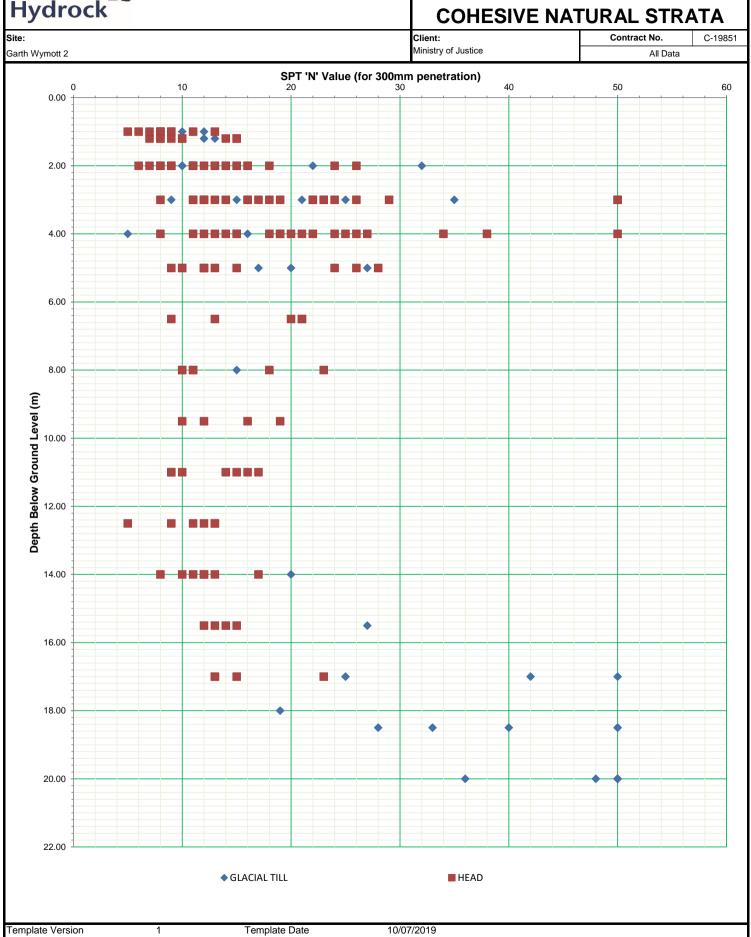

for and on behalf of i2 Analytical Ltd

Date Reported: 31/08/2021 Page: 1 of 1

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

Geotechnical Plots

0 0.00	10	20						t Justice				All Data	
0.00	10	20					Ministry o	, odolioo				All Data	
0.00			30	40	Moisture 50	Conte	ent (%)	80	90	100	110	120	
		X	×	A	×								
2.00													
-													
+													
4.00													
6.00													
8.00													
10.00													
8.00													
12.00													
-													
14.00													
.4.00													
+													
+													
16.00													
-													
18.00													
	■ GLACIAL T	111 4	▲ HEAD	× MAF	DE GROUND	₩ N/I Ж	ADE GROUI	ND- bUND	BACKFILL	■ NA	TURAL- PON	ID INFILL	


e:	lrock									Clie					Contract	No.	C-198
rth Wymc	ott 2											Justice				All Data	
	0	10	20	2	0	40	I	Moistu	ire Cont	ent (%	%)	00	00	100	440	400	4.
14	.00	10	20	3		40	50	,	00	1	, 	80	90	100	110	120	13
40																	
12.	2.00		×				×										
			A		X												
10	0.00		X	×													
8.	3.00																
<u>6</u> .	5.00					+++				+++							+++
Levei (mAUU)																	
L) ia																	
Ĕ																	
4.	.00																
										+++							
2.	2.00																
	.00																
U.	0.00																
-2	.00																
									+								
4	.00																
-4.																	
-6	5.00																
	■G	LACIAL TIL	L A	▲ HEA	D	×MA	DE GRO	UND	 ₩ N	ADE G	ROUN	ID- POND	BACKFILL	■ NA	TURAL- POI	ND INFILL	

							Client:	£ 1#			Contract No	
ymott 2							Ministry o				Al	ll Data
0		10		SPT	'N' Value	(for 300m	nm penetr	ation)	40		50	
0.00												
											1	
0.00												
2.00												
<u> </u>								•				
4.00												
	•					T-	T				T	
				• •								
6.00												
8.00			-	-								
10.00												
1												
10.00												
12.00												
			-									
14.00												
						•						
16.00												
					•				•		•	
18.00				•								
						•	•		•		•	
20.00												
22.00												
22.00												
^ 0	LACIAL TILI	L ■HE	ΛD Δ ΜΛΙ	DE GROUND) VM/	ADE GROUN		VCKEILI	X NATUR	AL DOND IN	ובוו ו	

/drock						Ī	Client: //inistry of Ju	ıstice		0	Contract No. All Data	C-
			SF	T 'N' Va	lue (for 3	00mm	penetrati	on)				
16.00		10	2	0		30			40		50	
14.00												
		•										
12.00							•					
12.00	A A											

10.00												
	• • • • • • •	Ţ Ĭ Ð_ B ₹	* * 1	•	•							
		X			•							
8.00		*8 _85										
				٠.				•				
6.00												
4.00												
		7										
				-								
2.00												
+		• •										
0.00												
		_										
-2.00												
-2.00												
-4.00					•							
									+ .			
-6.00				-								
											*	
			•				•				†	
-8.00												
											•	
-10.00										*	†	
10.00												
-12.00												
♦ GL	ACIAL TILL	HEAD ▲ M	IADE GROU	IND ×	MADE GR	OUND-	POND BAC	KFILL	X NATURAL-	POND INFI	LL	

Hydrock	
i i y ai o cir	

SPT 'N' VALUES vs DEPTH

ydrock					SPT 'N' VALUES vs LEVEL COHESIVE STRATA			
/ymott 2					Client: Ministry of Justic	e	Contract No.	C-19
ymott 2			SPT 'N' Val	ue (for 300n	m penetration		All Data	
0 16.00 		10	20	3)	40	50	1
14.00								
14.00								
		•						
12.00								
	*				•			
10.00								
	◆ ■■			•				
8.00								
6.00								
4.00		•						
2.00								
0.00								
2.00								
-2.00								
-4.00				• •				
-6.00								
							*	
-8.00			•		•			
0.00								
-10.00								
-12.00								

10/07/2019

Template Date

Template Version

1

1	
er e el	
Hydrock	
,	

Template Version

1

Template Date

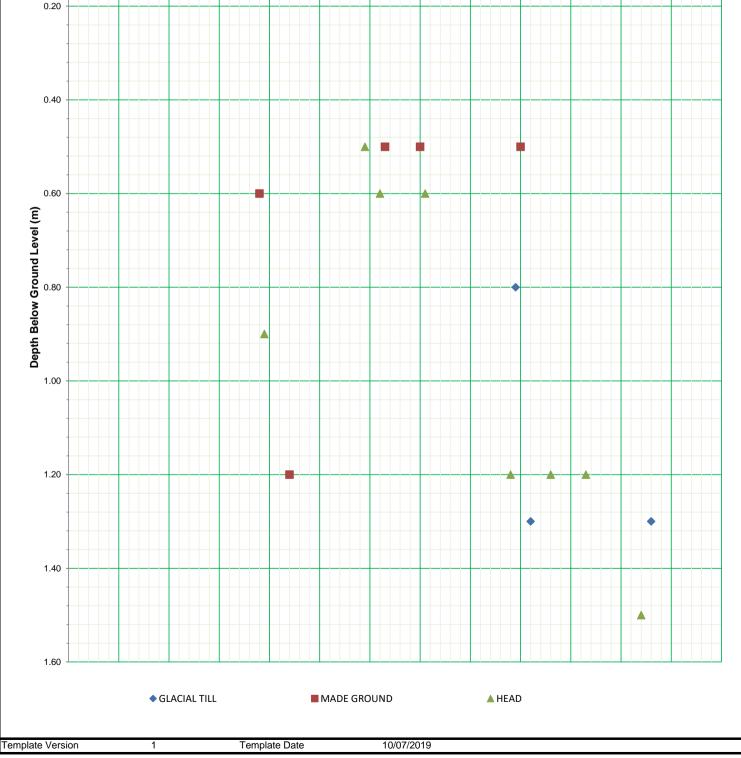
SPT 'N' VALUES vs DEPTH

GRANULAR NATURAL STRATA Contract No. Site: Client: C-19851 Ministry of Justice All Data Garth Wymott 2 SPT 'N' Value (for 300mm penetration) 40 50 60 10 0.00 2.00 4.00 6.00 Depth Below Ground Level (m)
00.01 12.00 14.00 16.00 18.00 ◆ GLACIAL TILL ▲ NATURAL- POND INFILL ■ HEAD

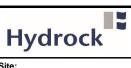
10/07/2019

Hydrock	
Site:	
Garth Wymott 2	

Template Version

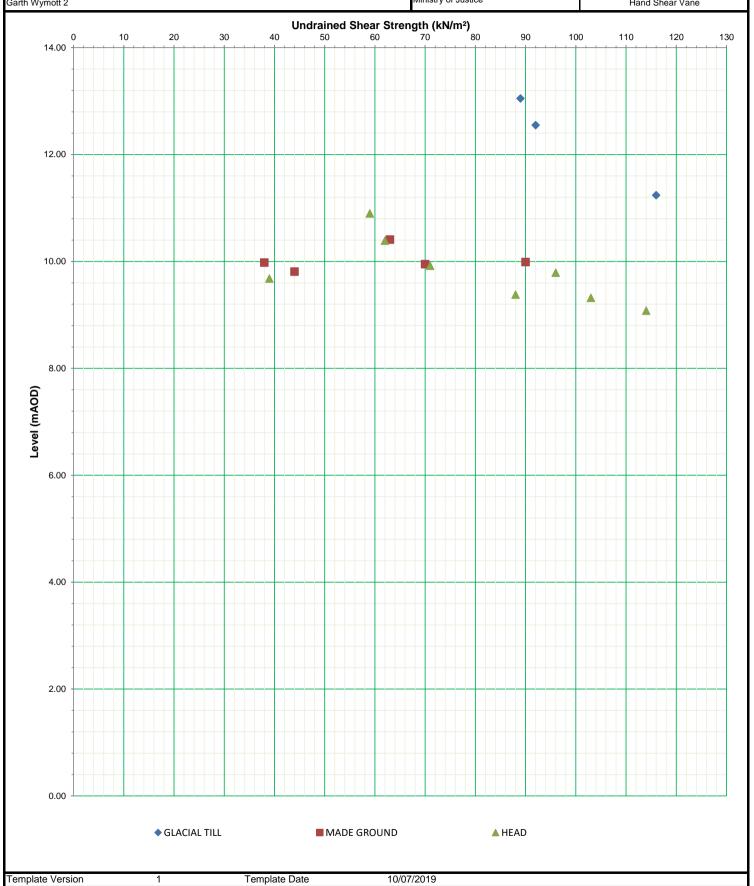

SPT 'N' VALUES vs LEVEL

GRANULAR STRATA Contract No. Client: C-19851 Ministry of Justice All Data SPT 'N' Value (for 300mm penetration) 10 40 50 60 12.00 10.00 8.00 6.00 Depth Below Ground Level (m)
2.00
0.00 -2.00 -4.00 -6.00 -8.00 ▲ NATURAL- POND INFILL ◆ GLACIAL TILL ■ HEAD


10/07/2019

Template Date

ydroc	k								UI	NDR	All		SHE. S DEF	AR ST PTH	REN	GTH
									Client:	of Justice				Contract I		C-1985
Vymott 2				_						Hand	Shear Var	ne				
0	10	20	30	40	Undra 5	ined 3 50	Shear 60	Strei	ngth (kl 70	N/m²) 80		90	100	110	120	130
0.00																
-																
+																
1																
0.20																
+																
-																
-																
-																
0.40																
-																
-									$\perp \perp$			-1				
-																
-																
0.60				-												
<u>ਵ</u> ਿ																
<u>=</u>																
) Le																
<u>P</u>																
0.80												•				
Below Ground Level (m)												Ť				
<u> </u>																
<u>m</u>																



Template Version

UNDRAINED SHEAR STRENGTH vs LEVEL

Site:Client:Contract No.C-19851Garth Wymott 2Ministry of JusticeHand Shear Vane

BRE SD1 Results and Datasheets

Russel Sumner Hydrock Consultants Ltd London Gateway SS17 9PD

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e:

Analytical Report Number: 21-11464

Project / Site name:Garth Wymott 2Samples received on:22/09/2021

Your job number: C 19851 C Samples instructed on/ 22/09/2021

Analysis started on:

Your order number: PO09538 Analysis completed by: 24/09/2021

Report Issue Number: 1 **Report issued on:** 24/09/2021

Samples Analysed: 1 soil sample

Signed: M. Cxerwinska

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate. $\label{eq:pdf} % \begin{subarray}{ll} \end{subarray} % \begin{$

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number: 21-11464 Project / Site name: Garth Wymott 2

Lab Sample Number				2019190
Sample Reference				BH109
Sample Number		None Supplied		
Depth (m)				12.50-13.00
Date Sampled				
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	18
Total mass of sample received	kg	0.001	NONE	2.0

General Inorganics

ocheral Inorganics				
pH - Automated	pH Units	N/A	MCERTS	8.6
Total Sulphate as SO4	mg/kg	50	MCERTS	2900
Total Sulphate as SO4	%	0.005	MCERTS	0.287
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	1.5
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	1480
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	7.3
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	3.6
Total Sulphur	mg/kg	50	MCERTS	1200
Total Sulphur	%	0.005	MCERTS	0.122
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	0.7
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	0.07
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	3.3
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/I	5	NONE	< 5.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	190
Magnesium (leachate equivalent)	mg/l	2.5	NONE	94

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Analytical Report Number : 21-11464 Project / Site name: Garth Wymott 2

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2019190	BH109	None Supplied	12.50-13.00	Brown clay and loam with vegetation.

Analytical Report Number: 21-11464 Project / Site name: Garth Wymott 2

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Water Soluble Nitrate (leachate equivalent	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Russell Sumner

Hydrock Consultants Ltd 4 Lakeside Festival Park Stoke on Trent ST1 5RY

t: 01782 261919 f: 01782 262020

e: Russellsumner@hydrock.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-11663

Project / Site name: Garth Wymott 2 Samples received on: 27/08/2021

Your job number: C-19851-C Samples instructed on/ 23/09/2021

Analysis started on:

Your order number: PO09538 Analysis completed by: 29/09/2021

Report Issue Number: Report issued on: 29/09/2021

Samples Analysed: 2 soil samples

Signed: A. Cherwinska

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-11663 Project / Site name: Garth Wymott 2

Lab Sample Number				2020207	2020208
Sample Reference	WS103	WS106			
Sample Number	2	6			
Depth (m)				0.50	0.80-1.00
Date Sampled				01/09/2021	01/09/2021
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	16
Total mass of sample received	kg	0.001	NONE	0.60	0.60

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.3	8.0
Total Sulphate as SO4	mg/kg	50	MCERTS	140	430
Total Sulphate as SO4	%	0.005	MCERTS	0.014	0.043
water Soluble SO4 160r extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0075	0.010
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	7.5	10.1
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	1.2	4.2
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	0.6	2.1
Total Sulphur	mg/kg	50	MCERTS	98	230
Total Sulphur	%	0.005	MCERTS	0.010	0.023
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	< 0.5	< 0.5
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	< 0.05
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	5.8	32
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	16

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	8.1	9.0
Magnesium (leachate equivalent)	mg/l	2.5	NONE	4.0	4.5

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Analytical Report Number : 21-11663 Project / Site name: Garth Wymott 2

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2020207	WS103	2	0.5	Brown clay and loam with gravel and vegetation.
2020208	WS106	6	0.80-1.00	Brown clay and loam with gravel and vegetation.

Analytical Report Number: 21-11663 Project / Site name: Garth Wymott 2

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method	Wet / Dry	Accreditation
Analytical rest Name	Analytical Method Description	Analytical Fiethou Reference	number	Analysis	Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Nitrate, water soluble, in soil	petermination of nitrate by reaction with sodium and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.		L078-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES.	In house method.	L038-PL	D	MCERTS
Water Soluble Nitrate (leachate equivalent	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Russell Sumner

Hydrock Consultants Ltd 4 Lakeside Festival Park Stoke on Trent ST1 5RY

t: 01782 261919 **f:** 01782 262020

e: Russellsumner@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-98783

Project / Site name: Garth Wymott 2 Samples received on: 07/09/2021

Your job number: C 19851 C Samples instructed on/ 09/09/2021

Analysis started on:

Your order number: PO09538 Analysis completed by: 16/09/2021

Report Issue Number: 1 **Report issued on:** 16/09/2021

Samples Analysed: 3 soil samples

Signed: Izabela Wojcik

<u>---</u>

Izabela Wójcik Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-98783 Project / Site name: Garth Wymott 2

Lab Sample Number	•			2007448	2007449	2007450
Sample Reference				BH106	BH107a	WS103
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)				24.00	5.00-5.45	1.20-2.00
Date Sampled						
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	7.4	11	14
Total mass of sample received	kg	0.001	NONE	1.1	0.70	0.70

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.7	8.7	8.6
Total Sulphate as SO4	mg/kg	50	MCERTS	730	350	320
Total Sulphate as SO4	%	0.005	MCERTS	0.073	0.035	0.032
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.12	0.045	0.042
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	122	44.8	42.0
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	6.8	7.6	2.9
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	3.4	3.8	1.4
Total Sulphur	mg/kg	50	MCERTS	240	600	130
Total Sulphur	%	0.005	MCERTS	0.024	0.060	0.013
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	< 0.5	38	< 0.5
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	3.78	< 0.05
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	2.1	< 2.0	3.1
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	< 5.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	11	7.9	16
Magnesium (leachate equivalent)	mg/l	2.5	NONE	5.7	3.9	8.0

Analytical Report Number : 21-98783 Project / Site name: Garth Wymott 2

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2007448	BH106	None Supplied	24	Brown clay and sand.
2007449	BH107a	None Supplied	5.00-5.45	Brown clay.
2007450	WS103	None Supplied	1.20-2.00	Brown clay.

Analytical Report Number: 21-98783 Project / Site name: Garth Wymott 2

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method	Wet / Dry	Accreditation
Analytical rest Name	Analytical Method Description	Analytical Fiethou Reference	number	Analysis	Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES.	In house method.	L038-PL	D	MCERTS
Water Soluble Nitrate (leachate equivalent	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Client Location or material to which this assessment applies MINISTRY OF JUSTICE MADE GROUND Project **GARTH WYMOTT 2** Job number C-19851 Concrete in aggressive ground After BRE Special Digest 1, 2005 Soil data Water (Adjusted) water Total potential soluble soluble sulfate sulfate magnesium (mg/l) (%)(mg/l) Number of tests 3 3 3 No. tests in 20% data set 1 1 No. tests with suspected pyrite 1 Maximum value 168.1 0.4 10 Mean of highest two values 91 0 Mean of highest 20% Characteristic Value 168.1 10 0.4 Mg not required [no pyrite] [pyrite suspected] **DS Class** DS-1 DS-2 If pyrite suspected, DS Class limited to DS-2 Is pyrite assumed to be present? No Adopted DS Class = DS-1 Water data (Adjusted) soluble Soluble sulfate magnesium (mg/l) (mg/l) **Characteristic Value** (Maximum Level) Mg not required **DS Class** pH data Soil Water Number of tests 3 0 No. tests in 20% data set 1 Lowest pH 8.0 Mean of lowest 20% 8.0 Characteristic value 8.0 Design value 8.0 Number of soil pH results less than 5.5 **DS Class design value ACEC Class design value Brownfield** Based on higher of soil and water data DS-1 Mobile groundwater

nt STRY OF JUSTICE		Location or material to which this assessment applie								
ect		HEAD	• •							
TH WYMOTT 2										
number										
851		<u> </u>								
Concrete in	aggressive	ground	After BRE Special Digest 1, 2005							
Soil data										
			Water							
	(Adjusted) water	Total potential	soluble							
	soluble sulfate	sulfate	magnesium							
	(mg/l)	(%)	(mg/l)							
Number of tests	4	4	4							
No. tests in 20% data set	1	1	1							
b. tests with suspected pyrite	1	0	•							
Maximum value	1484.86	0.4	94							
Mean of highest two values	767	0.4	52							
Mean of highest 20%	101	U	JZ							
Characteristic Value	1/0/ 06	0.4	0.4							
Characteristic value	1484.86	0.4	94							
	[na nimital	Inveito ou openial								
DS Class	[no pyrite]	[pyrite suspected]	_							
DS Class	DS-2	DS-2	=							
16	O Olasa Beste Les		<u> </u>							
it nyrita ellenactad [IN Class limited to	DS-2								
If pyrite suspected, D	o olass illilited to		=							
Is pyrite assumed to		Adopted DS Class	= DS-2							
Is pyrite assumed to			= DS-2							
			= DS-2							
Is pyrite assumed to	be present? No		= DS-2							
Is pyrite assumed to	be present? No	Adopted DS Class Soluble	= DS-2							
Is pyrite assumed to	be present? No (Adjusted) soluble sulfate	Soluble magnesium	= DS-2							
Is pyrite assumed to	be present? No	Adopted DS Class Soluble	= DS-2							
Is pyrite assumed to	be present? No (Adjusted) soluble sulfate	Soluble magnesium	= DS-2							
Is pyrite assumed to Water data Characteristic Value	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-2							
Spyrite assumed to Water data Characteristic Value (Maximum Level) DS Class	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-2							
Water data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-2							
Spyrite assumed to Water data Characteristic Value (Maximum Level) DS Class	be present? No (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l)	= DS-2							
Characteristic Value (Maximum Level) DS Class pH data	be present? No (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l) 0	= DS-2							
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set	be present? No (Adjusted) soluble sulfate (mg/l) 0 Soil 4 1	Soluble magnesium (mg/l) 0	= DS-2							
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH	Modusted) soluble sulfate (mg/l) Soil 4 1 7.6	Soluble magnesium (mg/l) 0	= DS-2							
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	Soil 4 1 7.6 7.6	Soluble magnesium (mg/l) 0	= DS-2							
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	Soil 4 1 7.6 7.6 7.6	Soluble magnesium (mg/l) 0	= DS-2							
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	Soil 4 1 7.6 7.6	Soluble magnesium (mg/l) 0	= DS-2							
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	Soil 4 1 7.6 7.6 7.6	Soluble magnesium (mg/l) 0	= DS-2							
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	Soil 4 1 7.6 7.6 7.6	Soluble magnesium (mg/l) 0	ACEC Class design value							
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	Soil 4 1 7.6 7.6 7.6 7.6 0 yn value	Soluble magnesium (mg/l) 0								

Head1, Summary of Results 15/10/2021, 12:42

Client Location or material to which this assessment applies MINISTRY OF JUSTICE SINGLETON MUDSTONE MEMBER Project **GARTH WYMOTT 2** Job number C-19851 Concrete in aggressive ground After BRE Special Digest 1, 2005 Soil data Water (Adjusted) water Total potential soluble soluble sulfate sulfate magnesium (mg/l) (%)(mg/l) Number of tests 1 1 No. tests in 20% data set 0 0 0 No. tests with suspected pyrite 0 Maximum value 126.59 0.1 5.7 Mean of highest two values 127 6 Mean of highest 20% Characteristic Value 126.59 0.1 5.7 [no pyrite] [pyrite suspected] **DS Class** DS-1 DS-1 If pyrite suspected, DS Class limited to DS-1 Is pyrite assumed to be present? No Adopted DS Class = DS-1 Water data (Adjusted) soluble Soluble sulfate magnesium (mg/l) (mg/l) **Characteristic Value** 0 0 (Maximum Level) **DS Class** pH data Soil Water Number of tests 0 1 No. tests in 20% data set 0 Lowest pH 8.7 Mean of lowest 20% Characteristic value 8.7 Design value 8.7 Number of soil pH results less than 5.5 **DS Class design value** ACEC Class design value Natural ground Mobile groundwater_ Based on higher of soil and water data **DS-1** * increase to AC-2z in flowing water (pure or with >15mg/l carbon dioxide)

Appendix D Site Monitoring Data and Ground Gas Risk Assessment

Site Monitoring Data

	Citor	Courth 18/10					No.	:																				
lah		Garth Wyr		2			Notes or		condition Date	ns:		Oper	ator		Weathe	r Conditio	one											
Job		C-19851-C		-					1/2020			E3			Unknow		UIIS											
		Ministry o					_																					
_		s analyser: check OK:		J00					12/2020 10/2021			E3	S		Unknow Sunny a													
-		ce in date:							1/2021				<u> </u>			ain and C)vorcast											
		check OK:					_		11/2021			R			Mild and		vercast											
		nonitoring:		Motos													Ч											
ivallie o	i person n	ionitoring.	3ee 1	votes.				11/02/2022 RS Overcast and Mild 04/03/2022 AC Sunny, clear skies																				
								08/03/2022 AC Sunny, clear skies 08/03/2022 AC Sunny, clear skies																				
													Julily, C	icai skies	,													
							Notes: LEL	Notes: LEL = lower explosive limit = 5%v/v. * where the flow is less than the limit of detection of							of detection of the instrument, the detection limit is reported (Highlighted in blue). GSVs are rounded to 3 places.													
Monitorin	ng round		Bore	hole deta				Pressure and flow								Gas c	oncenti	rations					G	SV	Local conditions			
Date	Time	Borehole	Single or du	Response zon	Depth to water or de (m)	D denotes	Relative BH pres Atm pressure falling /			Gas flow [*] (l/hr)	Gas flow* (absolute	VOC (as ppm		:H ₄ v/v)	CI (%I			O ₂ v/v)	(%v) ₂ //v)	Other	Gases	Gas Screening Va	Gas Screening Va	Notes on condition of borehole and surrounding ground			
ò	ē	ole	or dual gas tap	nse zone depth (m)	depth of hole if dry n)	dry hole	ess	g/rising/steady	pressure (hPa)	* (I/hr)	ıte value) (I/hr)	ppm using PID)	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	СО (РРМ)	H₂S (PPM)	lue (CH ₄) (I/hr)	Value (CO ₂) (I/hr)				
-					-	-	Max. i	ndividu	ual values:		17.6			4.6		92.0		10.1		21.6	-		0.186	1.240				
							Min.	individ	ual values:		0.1			0.1		2.0		0.1		0.5			0.000	0.000	Summary statistics for this monitoring period.			
								,		Worst-ca	se GSVs ba	ased on ma	ax. indivi	dual flow	and max. i	ndividual	conc. ove	er the dur	ation of th	nis table:			0.8096	1.7776				
13/11/20	-	WS108E	S	4.00	2.82	_	1006	R	NR	0.1	0.1	NR	0.1	0.1	2	2	6.9	6.9	10.6	10.6	NR	NR	0.000	0.007				
13/11/20	-	WS109E	S	4.00	0.41		1004	R	NR	0.1	0.1	NR	0.1	0.1	2	2	7.7	7.7	11.7	11.7	NR	NR	0.000		Borehole flooded above response zone			
13/11/20	-	WS112E	S	4.00	0.40		1006	R	NR	0.1	0.1	NR	0.1	0.1	2	2	5.7	5.7	12.1	12.1	NR	NR	0.000	0.006	Borehole flooded above response zone			
01/12/20	-	WS102E	S	4.00	0.65		1028	R	NR	0.1	0.1	NR	0.1	0.1	2	2	6.7	6.7	8.7	8.7	NR	NR	0.000	0.007				
01/12/20	-	WS108E	S	4.00	3.38		1029	R	NR	0.1	0.1	NR	0.1	0.1	2	2	0.6	0.6	19.1	19.1	NR	NR	0.000	0.001				
01/12/20	-	WS109E	S	4.00	0.42	_	1030	R	NR	0.1	0.1	NR	0.1	0.1	2	2	8.6	8.6	9.5	9.5	NR	NR	0.000		Borehole flooded above response zone			
01/12/20	-	WS112E	S	4.00	0.42		1029	R	NR	0.1	0.1	NR	0.1	0.1	2	2	5.8	5.8	12.3	12.3	NR	NR	0.000	0.006	Borehole flooded above response zone			
06/10/21	AM	BH106	S	25.60	2.16		1017	R	1.40	15.5	15.5	NR	0.1	0.1	2	2	0.6	0.6	20.3	14.5	4.0	<1	0.016	0.093				
06/10/21	AM	BH109	S	13.40	2.54		1018	R	0.65	11.0	11.0	NR	0.2	0.2	4	4	2.0	2.2	20.6	15.8	<1	<1	0.022	0.242				
06/10/21	AM	WS104	S	2.50	0.80		1018	R	0.04	9.3	9.3	NR	0.1	0.1	2	2	1.9	2.0	20.4	18.8	4.0	<1	0.009	0.186				
06/10/21	AM	WS102	S	3.10	1.08		1018	R	-0.02	0.1	0.1	NR	0.1	0.1	2	2	6.6	6.7	14.4	6.2	<1	<1	0.000	0.007				
06/10/21	AM	BH105	S	20.00	1.60	1	1019	R	13.84	9.7	9.7	NR	0.1	0.1	2	2	8.1	8.2	8.2	5.9	8.0	<1	0.010	0.795				
06/10/21	AM	BH108	S	11.65	3.93	_	1019	R	0.04	0.1	0.1	NR	0.1	0.1	2	2	2.6	2.7	18.1	13.5	<1	<1	0.000	0.003				
06/10/21	PM	BH101	S	19.10	2.23	\perp	1019	R	-19.00	8.6	8.6	NR	0.1	0.1	2	2	0.4	0.3	20.8	20.8	6.0	<1	0.009	0.026				
06/10/21	PM	BH103	S	16.75	2.90	+	1019	R	-0.09	2.5	2.5	NR	0.1	0.1	2	2	0.8	0.7	20.1	18.9	2.0	<1	0.003	0.018				
06/10/21	PM	BH107A	S	14.10	3.40	+	1019	R	0.23	5.5	5.5	NR	0.1	0.1	2	2	1.7	1.7	20.5	16.9	6.0	<1	0.006	0.094	Unable to remove hung install demanded by ferror webit			
06/10/21	PM	WS103	S	-	-		1019	R	0.42	0.1	0.1	NR	0.1	0.1	2	2	1.1	1.3	19.2	17.0	2.0	<1	0.000	0.001	Unable to remove bung- install damaged by farm vehicle			
02/11/21	AM	BH106	S	25.50	1.77		996	R	-1.80	17.6	17.6	NR	0.1	0.1	2	2	0.1	0.1	21.5	21.4	<1	<1	0.018	0.018				
02/11/21	AM	WS104	S	2.80	0.53	_	996	R	2.78	6.5	6.5	NR	0.2	0.1	4	2	1.3	1.3	21.3	20.7	<1	<1	0.007	0.085				
02/11/21	AM	WS102	S	3.08	0.45	_	997	R	-17.50	0.1	0.1	NR	0.2	0.2	4	4	7.3	7.5	17.1	3.9	<1	<1	0.000	0.008				
02/11/21	AM	BH105	S	20.00	2.18	_	997	R	-1.14	6.1	6.1	NR	0.1	0.1	2	2	6.7	6.8	17.8	0.5	2.0	<1	0.006	0.415				
02/11/21	AM	BH108	S	11.42	3.69	+	997	R	0.39	3.8	3.8	NR	0.1	0.1	2	2	4.1	4.5	8.3	5.8	<1	<1	0.004	0.171				
02/11/21	AM	BH101	S	19.18	2.15	+	997	R	0.02	0.1	0.1	NR	0.1	0.1	2	2	0.1	0.1	21.6	21.6	<1	<1	0.000	0.000				
02/11/21	AM	BH103	S	16.58	2.75		997	R	4.38	3.8	3.8	NR	0.1	0.1	2	2	0.9	0.9	21.0	20.2	<1	<1	0.004	0.034				

Monitorin	g round		Bore	hole detai	ils	Т		Pre	ssure an	d flow	ow Gas concentrations							G	SV	Local conditions					
Date	Time	Borehole	Single or dual gas	Response zon	ater or d	D denotes	Atmospheric pr	Atm pressure falling	Relative BH pro	Gas flow*	Gas flow* (absolute	VOC (as ppm		H ₄ //v)		H ₄ LEL)		O ₂ v/v)) ₂ v/v)	Other	Gases	Gas Screening Value	Gas Screening Value	Notes on condition of borehole and surrounding ground
13	rs	ole	al gas tap	zone depth (m)	말	dry hole	essure (hPa)	; / rising / steady	essure (hPa)	(I/hr)	te value) (I/hr)	using PID)	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	СО (РРМ)	H₂S (PPM)	lue (CH ₄) (I/hr)	ue (CO ₂) (I/hr)	
02/11/21	AM	BH107A	S	14.00	3.36		997	R	39.99	4.1	4.1	NR	0.3	0.2	6	4	2.1	2.0	19.5	13.2	2.0	<1	0.008	0.082	
21/01/22	AM	WS104	S	2.79	0.52		1038	F	-8.92	2.4	2.4	NR	4.6	4.6	92	92	2.8	2.8	4.6	4.6	2	<1	0.110	0.067	
21/01/22	AM	BH106	S	25.55	1.95		1038	F	-1.51	0.1	0.1	NR	0.1	0.1	2	2	0.7	0.7	19.7	19.7	<1	<1	0.000	0.001	
21/01/22	AM	BH105	S	19.87	2.35		1038	F	46.55	0.1	0.1	NR	0.2	0.2	4	4	4.3	4.3	20.7	20.7	26	<1	0.000	0.004	
21/01/22	AM	BH103	S	16.52	2.59		1038	F	-12.26	13.4	13.4	NR	0.1	0.1	2	2	6.7	6.7	2.6	2.6	2	<1	0.013	0.898	
21/01/22	AM	WS102	S	19.98	2.39		1038	F	7.25	0.1	0.1	NR	0.1	0.1	2	2	2.5	2.5	9.4	9.4	<1	<1	0.000	0.003	
21/01/22	AM	BH101	S	19.05	1.94	4	1038	F	-10.67	2.4	2.4	NR	0.1	0.1	2	2	1.1	0.6	18.8	19.8	3	<1	0.002	0.014	
21/01/22	AM	BH107A	S	14.22	3.28		1038	F	72.49	0.1	0.1	NR	0.1	0.1	2	2	9.3	9.2	2.2	2.2	<1	<1	0.000	0.009	
21/01/22	AM	BH108	S	11.43	3.67		1038	F	-1.52	5.9	5.9	NR	0.1	0.1	2 NR	2	6.4	6.3	1.6	1.6	2	<1	0.006	0.372	
11/02/22	AM	BH106	S	25.38	1.67		1030	R	-3.98	7.8	7.4	NR	0.1	0.1	2	2	2.1	2.3	20.2	17.6	2	<1	0.008	0.179	
11/02/22	AM	WS104	S	2.78	0.40		1030	R	0.72	0.1	0.1	NR	0.1	0.1	2	2	0.6	0.1	20.6	20.9	<1	<1	0.000	0.000	
11/02/22	AM	WS102	S	3.10	0.57		1031	R	8.95	0.1	0.1	NR	0.1	0.1	2	2	5.2	5.3	18.4	5.4	<1	<1	0.000	0.005	
11/02/22	AM	BH105	S	19.80	1.96	4	1031	R	-3.89	3.5	9.3	NR	0.1	0.1	2	2	2.9	3.5	18.0	6.4	3	<1	0.004	0.123	
11/02/22	AM	BH108	S	11.40	3.61	+	1031	R	0.05	1.9	5.1	NR	0.1	0.1	2	2	6.0	5.9	16.2	3.9	<1	<1	0.002	0.112	
11/02/22	AM	BH101	S S	19.00	2.00	-	1031 1031	R R	-2.85 -5.97	0.1	0.1	NR	0.1	0.1	2	2	0.2	0.2	20.0	20.2	<1	<1	0.000	0.000	
11/02/22	AM AM	BH103 BH107A	S	16.53	3.11	+	1031	R	14.10	2.2 1.7	8.0 4.1	NR NR	0.1	0.1	2	2	6.2 9.7	6.4 9.8	14.5 9.1	5.4 1.1	3 <1	<1 <1	0.002	0.141 0.167	
11/02/22	Alvi	BITTOTA		14.03	3.11			IX		1.7	4.1	INIX		0.1			9.7	9.0	9.1		ν,	ζ1	0.002	0.107	
04/03/22	AM	WS102	S	3.11	0.46		996	F	13.78	4.9	4.9	NR	3.8	3.8	76	76	1.7	1.7	19.8	19.8	<1	<1	0.186	0.083	
04/03/22	AM	BH108	S	11.45	3.62		996	F	12.98	0.1	0.1	NR	0.1	0.1	2	2	5.7	5.7	6.1	6.1	<1	<1	0.000	0.006	
04/03/22	AM	BH106	S	25.33	1.70	_	997	F	14.33	1.8	1.8	NR	0.1	0.1	2	2	2.3	2.3	18.7	18.7	<1	<1	0.002	0.041	
04/03/22	AM	WS104	S	2.80	0.24	-	997	F	14.45	8.8	8.8	NR	0.1	0.1	2	2	6.8	6.8	19.3	19.3	3	<1	0.009	0.598	
04/03/22 04/03/22	AM	BH101	S S	19.02 16.54	1.88 2.50	-	997	F	13.93	0.3	0.3	NR	0.1	0.1	2	2	0.5	7.6	20.4	21.4	3	<1	0.000	0.001	
04/03/22	AM AM	BH103 BH105	S	19.79	2.04	+	997 997	F	14.16 14.85	7.3	7.3	NR NR	0.1	0.1	2	2	7.6 4.0	4.0	5.0 1.9	5.0 1.9	<1 <1	<1 <1	0.000	0.008	
04/03/22	AM	BH107A	S	14.03	3.80	+	997	F	14.35	12.4	12.4	NR	0.1	0.1	2	2	10.0	10.0	0.6	0.6	<1	<1	0.012	1.240	
						_		_			1													· · · · · · · · · · · · · · · · · · ·	
08/03/22	AM	BH106	S	25.39	1.74	\dashv	1009	F	14.38	2.5	2.5	NR	0.1	0.1	2	2	1.7	1.7	19.4	19.4	<1	<1	0.003	0.043	
08/03/22 08/03/22	AM	WS104 WS102	S S	3.11	0.38	+	1009 1009	F	-0.43 14.19	0.1	0.1	NR	1.4	0.1 1.4	28	28	0.2	0.2	21.2	21.2	<1 <1	<1	0.000	0.000	
08/03/22	AM AM	BH108	S	11.45	3.53	\dashv	1009	F	13.92	0.1	0.1	NR NR	0.1	0.1	20	20	5.1	5.1	7.7	7.7	<1	<1 <1	0.001	0.001	
08/03/22	AM	BH105	S	19.79	2.01	\dashv	1009	F	13.92	3.1	3.1	NR	0.1	0.1	2	2	4.2	4.2	2.6	2.6	<1	<1	0.003	0.003	
08/03/22	AM	BH101	S	18.97	1.95	\dashv	1009	F	13.54	0.1	0.1	NR	0.1	0.1	2	2	0.4	0.4	20.2	20.1	3	<1	0.000	0.000	
08/03/22	AM	BH103	S	16.50	2.50	\dashv	1009	F	13.38	2.2	2.2	NR	0.1	0.1	2	2	6.3	6.3	8.8	8.8	<1	<1	0.002	0.139	
08/03/22	AM	BH107A	S	14.03	3.01	\dashv	1009	F	13.74	5.3	5.3	NR	0.1	0.1	2	2	10.1	10.1	3.1	3.1	<1	<1	0.005	0.535	
												L . "' \					1	L	L	L		L ''		2.300	

Ground Gas Risk Assessment

Ground Gas Risk Assessment

Job Number C-19851

Job Name Garth Wymott 2

Client Ministry of Justice

All Data Data

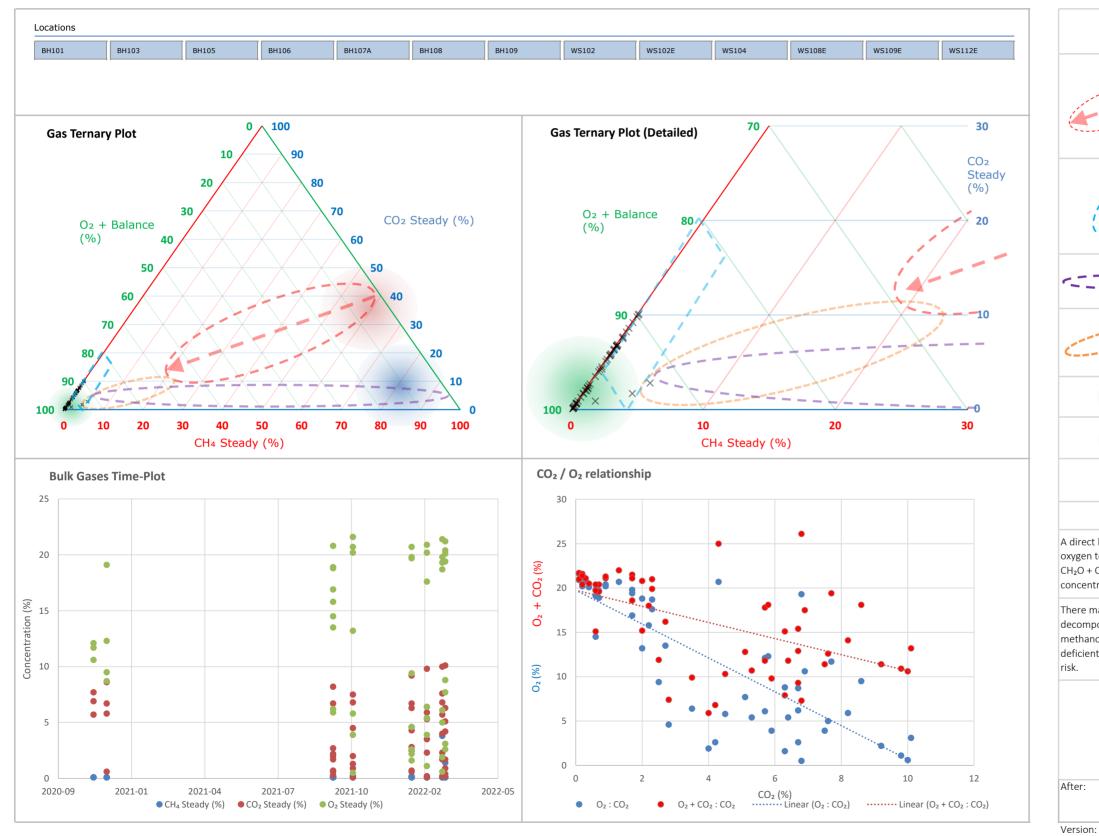
Max CH4	Max C02	Worst Case Flow	Worst Case GSV Methane	Worst Case GSV CO ₂
4.6	8.2	9.7	0.4462	0.7954

Number of Readings	57
Number of Monitoring Rounds	8
Number of Readings with Flow Rate	57

ı		NHBC	Assess	ment										
	Methane Carbon Dioxide													
		Max Value	GSV	Max Value	GSV									
	Green	54	56	33	54									
	Amber 1	3	1	23	3									
	Amber 2	0	0	1	0									
	Red	0	0	0	0									

CIRIA (CIRIA C665 Assessment														
	Meth		Carbon	Dioxide											
	Max Value	GSV	Max Value	GSV											
CS1	0.2	0.02	4.5	0.598											
CS2	3.8	0.1862	10.0	0.898											
CS3	N/A	0	N/A	0											
CS4	N/A	0	N/A	0											
CS5	N/A	0	N/A	0											
CS6	N/A	0	N/A	0											

	Busseyes		Relative	Flow Rate	Atmos.			(%l	-EL)	CO ₂ (% vol)	O ₂ (%	% vol)		
Location	Pressure Trend	Date	Pressure	(I/hr)	Pressure									GSV - CH4	GSV - CO ₂
511101		20/10/01	(mb)	` ′	(m.bar)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady		
BH101 BH103	R R	06/10/21 06/10/21	-19.00 -0.09	8.6 2.5	1019 1019	0.1 0.1	0.1 0.1	2.0 2.0	2.0 2.0	0.4	0.3	20.8 20.1	20.8 18.9	0.0086 0.0025	0.0258 0.0175
BH103 BH105	R	06/10/21	13.84	9.7	1019	0.1	0.1	2.0	2.0	8.1	8.2	8.2	5.9	0.0025	0.0175
BH106	R	06/10/21	1.40	15.5	1017	0.1	0.1	2.0	2.0	0.6	0.6	20.3	14.5	0.0037	0.0930
BH107A	R	06/10/21	0.23	5.5	1019	0.1	0.1	2.0	2.0	1.7	1.7	20.5	16.9	0.0055	0.0935
BH108	R	06/10/21	0.04	0.1	1019	0.1	0.1	2.0	2.0	2.6	2.7	18.1	13.5	0.0001	0.0027
BH109	R	06/10/21	0.65	11.0	1018	0.2	0.2	4.0	4.0	2.0	2.2	20.6	15.8	0.0220	0.2420
WS102	R	06/10/21	-0.02	0.1	1018	0.1	0.1	2.0	2.0	6.6	6.7	14.4	6.2	0.0001	0.0067
WS103	R	06/10/21	0.42	0.1	1019	0.1	0.1	2.0	2.0	1.1	1.3	19.2	17.0	0.0001	0.0013
WS104 WS108E	R R	06/10/21 13/11/20	0.04 NR	9.3 0.1	1018 1006	0.1 0.1	0.1	2.0	2.0	1.9 6.9	2.0 6.9	20.4 10.6	18.8 10.6	0.0093 0.0001	0.1860 0.0069
WS109E	R	13/11/20	NR	0.1	1006	0.1	0.1	2.0	2.0	7.7	7.7	11.7	11.7	0.0001	0.0069
WS112E	R	13/11/20	NR	0.1	1004	0.1	0.1	2.0	2.0	5.7	5.7	12.1	12.1	0.0001	0.0057
WS102E	R	01/12/20	NR	0.1	1028	0.1	0.1	2.0	2.0	6.7	6.7	8.7	8.7	0.0001	0.0067
WS108E	R	01/12/20	NR	0.1	1029	0.1	0.1	2.0	2.0	0.6	0.6	19.1	19.1	0.0001	0.0006
WS109E	R	01/12/20	NR	0.1	1030	0.1	0.1	2.0	2.0	8.6	8.6	9.5	9.5	0.0001	0.0086
WS112E	R	01/12/20	NR	0.1	1029	0.1	0.1	2.0	2.0	5.8	5.8	12.3	12.3	0.0001	0.0058
BH106	R	02/11/21	-1.80	0.1	996	0.1	0.1	2.0	2.0	0.1	0.1	21.5	21.4	0.0001	0.0001
WS104	R	02/11/21	2.78	0.1	996	0.2	0.1	4.0	2.0	1.3	1.3	21.3	20.7	0.0001	0.0013
WS102	R	02/11/21	-17.50	0.2	997	0.2	0.2	4.0	4.0	7.3	7.5	17.1	3.9	0.0004	0.0150
BH105 BH108	R R	02/11/21 02/11/21	-1.14 0.39	0.1 0.1	997 997	0.1 0.1	0.1 0.1	2.0 2.0	2.0 2.0	6.7 4.1	6.8 4.5	17.8 8.3	0.5 5.8	0.0001 0.0001	0.0068 0.0045
BH108	R	02/11/21	0.39	0.1	997	0.1	0.1	2.0	2.0	0.1	0.1	21.6	21.6	0.0001	0.0045
BH103	R	02/11/21	4.38	0.1	997	0.1	0.1	2.0	2.0	0.9	0.9	21.0	20.2	0.0001	0.0009
BH107A	R	02/11/21	39.99	0.2	997	0.3	0.2	6.0	4.0	2.1	2.0	19.5	13.2	0.0004	0.0040
WS104	F	21/01/22	-8.92	2.4	1038	4.6	4.6	92.0	92.0	2.8	2.8	4.6	4.6	0.1104	0.0672
BH106	F	21/01/22	-1.51	0.1	1038	0.1	0.1	2.0	2.0	0.7	0.7	19.7	19.7	0.0001	0.0007
BH105	F	21/01/22	46.55	0.1	1038	0.2	0.2	4.0	4.0	4.3	4.3	20.7	20.7	0.0002	0.0043
BH103	F	21/01/22	-12.26	13.4	1038	0.1	0.1	2.0	2.0	6.7	6.7	2.6	2.6	0.0134	0.8978
WS102	F	21/01/22	7.25	0.1	1038	0.1	0.1	2.0	2.0	2.5	2.5	9.4	9.4	0.0001	0.0025
BH101 BH107A	F F	21/01/22 21/01/22	-10.67 72.49	2.4 0.1	1038 1038	0.1 0.1	0.1 0.1	2.0 2.0	2.0 2.0	1.1 9.3	0.6 9.2	18.8 2.2	19.8 2.2	0.0024 0.0001	0.0144 0.0092
BH107A	F	21/01/22	-1.52	5.9	1038	0.1	0.1	2.0	2.0	6.4	6.3	1.6	1.6	0.0059	0.0092
BH106	R	11/02/22	-3.98	7.4	1030	0.1	0.1	2.0	2.0	2.1	2.3	20.2	17.6	0.0033	0.1702
WS104	R	11/02/22	0.72	0.1	1030	0.1	0.1	2.0	2.0	0.6	0.1	20.6	20.9	0.0001	0.0001
WS102	R	11/02/22	8.95	0.1	1031	0.1	0.1	2.0	2.0	5.2	5.3	18.4	5.4	0.0001	0.0053
BH105	R	11/02/22	-3.89	9.3	1031	0.1	0.1	2.0	2.0	2.9	3.5	18.0	6.4	0.0093	0.3255
BH108	R	11/02/22	0.05	5.1	1031	0.1	0.1	2.0	2.0	6.0	5.9	16.2	3.9	0.0051	0.3009
BH101	R	11/02/22	-2.85	0.1	1031	0.1	0.1	2.0	2.0	0.2	0.2	20.0	20.2	0.0001	0.0002
BH103	R	11/02/22	-5.97	8.0	1031	0.1	0.1	2.0	2.0	6.2	6.4	14.5	5.4	0.0080	0.5120
BH107A WS102	R F	11/02/22 04/03/22	14.10 13.78	4.1 4.9	1031 996	0.1 3.8	0.1 3.8	2.0 76.0	2.0 76.0	9.7 1.7	9.8	9.1 19.8	1.1 19.8	0.0041 0.1862	0.4018 0.0833
BH108	F	04/03/22	12.98	0.1	996	0.1	0.1	2.0	2.0	5.7	5.7	6.1	6.1	0.1862	0.0833
BH106	F	04/03/22	14.33	1.8	997	0.1	0.1	2.0	2.0	2.3	2.3	18.7	18.7	0.0001	0.0414
WS104	F	04/03/22	14.45	8.8	997	0.1	0.1	2.0	2.0	6.8	6.8	19.3	19.3	0.0088	0.5984
BH101	F	04/03/22	13.93	0.3	997	0.1	0.1	2.0	2.0	0.5	0.2	20.4	21.4	0.0003	0.0006
BH103	F	04/03/22	14.16	0.1	997	0.1	0.1	2.0	2.0	7.6	7.6	5.0	5.0	0.0001	0.0076
BH105	F	04/03/22	14.85	7.3	997	0.1	0.1	2.0	2.0	4.0	4.0	1.9	1.9	0.0073	0.2920
BH107A	F	04/03/22	14.35	12.4	997	0.1	0.1	2.0	2.0	10.0	10.0	0.6	0.6	0.0124	1.2400
BH106	F	08/03/22	14.38	2.5	1009	0.1	0.1	2.0	2.0	1.7	1.7	19.4	19.4	0.0025	0.0425
WS104 WS102	F F	08/03/22 08/03/22	-0.43 14.19	0.1 0.1	1009 1009	0.1 1.4	0.1 1.4	2.0 28.0	2.0 28.0	0.2	0.2	21.2 20.4	21.2 20.4	0.0001 0.0014	0.0002 0.0009
BH108	F	08/03/22	13.92	0.1	1009	0.1	0.1	28.0	2.0	5.1	5.1	7.7	7.7	0.0014	0.0009
BH105	F	08/03/22	13.00	3.1	1009	0.1	0.1	2.0	2.0	4.2	4.2	2.6	2.6	0.0001	0.1302
BH101	F	08/03/22	13.54	0.1	1009	0.1	0.1	2.0	2.0	0.4	0.4	20.2	20.1	0.0001	0.0004
BH103	F	08/03/22	13.38	2.2	1009	0.1	0.1	2.0	2.0	6.3	6.3	8.8	8.8	0.0022	0.1386
BH107A	F	08/03/22	13.74	5.3	1009	0.1	0.1	2.0	2.0	10.1	10.1	3.1	3.1	0.0053	0.5353


Ternary Plots

Hydrock Bulk Gases Ternary Plot Analysis

Client: Ministry of Justice
Site Name: Garth Wymott 2
Contract Number: C-19851
Assessment Date: 21/04/2022

Screened Strata: All
Site Zone: All site

	key.
	Indicative of landfill gas migration (assuming source composition 60% methane / 40% carbon dioxide) as it displaces air from the ground. Assumes no chemical changes. Below 20% methane and 13% carbon dioxide relationship for landfill gas migration unclear. Arrow shows direction of dilution with fresh air
0	Microbial respiration of organic material in soil. Zero methane and low flow. (Direct consumption of oxygen to produce carbon dioxide)
~~~~	Potentially indicative of methane outgassing from groundwater to borehole headspace (Hydrock dataset).
<u></u>	Potentially indicative of microbial degradation of LNAPL vapours in unsaturated zone. (Hydrock dataset)
	Indicative of a landfill gas source (e.g 60% CH ₄ / 40% CO ₂ )
	Indicative of geogenic gas (e.g mine-workings)
	Fresh air
	Additional Notes
oxygen to produce carbon o	elationship between $CO_2$ and $O_2$ indicates depletion of dioxide via microbial respiration using the following equation: In this scenerio $CO_2 + O_2$ should be around 21% (i.e. the $O_2$ phere)
decomposition in small anamethanogens. Oxygen conc	ounts of methane up to about 3% caused by anaerobic erobic hotspots or the reduction of carbon dioxide by entrations may be depleted but in this scenario oxygen be emitted quickly from the ground and it does not pose a
After: Wilson et al, :	2018. Ground Gas Information Sheet No. 1
	sets (methane outgassing / LNAPL vapour degradation)

09/07/2019

Key:



# Appendix E Contamination Test Results and Statistical Analysis









**Russell Sumner** 

Hydrock Consultants Ltd 4 Lakeside Festival Park Stoke on Trent ST1 5RY

t: 01782 261919 f: 01782 262020

e: Russellsumner@hydrock.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS** 

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

#### **Analytical Report Number: 21-95239-2**

Replaces Analytical Report Number: 21-95239, issue no. 1 Client references/information amended.

**Project / Site name:** Garth Wymott 2 Samples received on: 26/08/2021

Your job number: C19851 Samples instructed on/ 26/08/2021

Analysis started on:

Your order number: PO09538 Analysis completed by: 09/09/2021

**Report Issue Number:** 2 Report issued on: 09/09/2021

**Samples Analysed:** 1 bulk sample - 8 soil samples

Signed: A. Cherwinska

Agnieszka Czerwińska

Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Analytical Report Number: 21-95239-2 Project / Site name: Garth Wymott 2 Your Order No: PO09538

I ah Cample Number				1006102	1096104	1006105	1006106	1006107
Lab Sample Number				1986193	1986194 BH102	1986195 WS104	1986196	1986197
Sample Reference				BH104 None Supplied		WS104 1	SA104 1	CBR118
Sample Number					None Supplied			1
Depth (m)				17.00-17.00	7.50-7.50	0.50-0.50	0.20-0.20	0.10-0.10
Date Sampled				23/08/2021	24/08/2021	24/08/2021	24/08/2021	24/08/2021
Time Taken	1		1	1700	1700	0900	0900	0900
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	21	12	18	20	6.4
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.2	1.2	1.2
·								
Asbestos in Soil	Type	N/A	ISO 17025	-	-	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.1	8.5	7.0	7.8	8.7
Free Cyanide	mg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	1300	730		- 1.0	
Total Sulphate as SO4	%	0.005	MCERTS	0.134	0.073	-	_	-
water Soluble SO4 16nr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.44	0.18	0.015	0.0089	0.0049
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	437	185	-	-	-
	mg/kg	1.23	MCERTS			_	_	
Water Soluble Chloride (2:1)		0.5	MCERTS	14	7.0			-
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l		MCERTS	7.1	3.5	-	-	-
Total Sulphur	mg/kg	50	MCERTS	1100	560	-	-	-
Total Sulphur	%	0.005	MCERTS	0.114	0.056	-	-	-
Ammoniacal Nitrogen as NH4	mg/kg			1.7	1.1	-	-	-
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	0.17	0.11	-	-	-
Organic Matter	%	0.1	MCERTS MCERTS	-	-		-	-
Fraction Organic Carbon (FOC) Automated	N/A	0.001		-	-	0.053	0.043	0.0057
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	-	-	-	-	-
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE NONE	3.2	3.2	-	-	-
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	-	-	-
Total Phenols			MCEDIC	ı			,	
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	-	< 0.05	0.57	0.46
Anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05	1.6	0.93
Pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	1.6	1.0
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	0.68	0.39
Chrysene	mg/kg	0.05	MCERTS	-	-	< 0.05	0.72	0.46
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05	0.68	0.51
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05	0.55	0.30
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	0.52	0.45
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	0.47	0.31
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	< 0.05	0.61	0.45
"			•					
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	_	_	< 0.80	7.93	5.28
						` 0.00	7.55	3.20





Analytical Report Number: 21-95239-2 Project / Site name: Garth Wymott 2 Your Order No: P009538

Lab Sample Number				1986193	1986194	1986195	1986196	1986197
Sample Reference				BH104	BH102	WS104	SA104	CBR118
Sample Number				None Supplied	None Supplied	1	1	1
Depth (m)				17.00-17.00	7.50-7.50	0.50-0.50	0.20-0.20	0.10-0.10
Date Sampled		23/08/2021	24/08/2021	24/08/2021	24/08/2021	24/08/2021		
Time Taken	1700	1700	0900	0900	0900			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids					-			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	-	12	11	9.4
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-	-	0.89	0.82	0.30
Boron (water soluble)	mg/kg	0.2	MCERTS	-	-	0.7	< 0.2	< 0.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	-	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	-	-	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	-	-	28	24	8.1
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	29	24	8.5
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	-	26	55	13
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	-	75	68	9.6
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	-	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	-	28	25	6.2
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	32	28	8.2
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	-	73	140	16
Magnesium (water soluble)	mg/kg	5	NONE	51	29	-		
Magnesium (leachate equivalent)	mg/l	2.5	NONE	26	15	-	-	-

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$ 





Analytical Report Number: 21-95239-2 Project / Site name: Garth Wymott 2 Your Order No: P009538

Speciated Total EPA-16 PAHs

			1986198	1986199	1986200
			WS105	CBR115	WS105
					9
			0.30-0.50	None Supplied	1.30-1.30
			24/08/2021	24/08/2021	24/08/2021
			0900	0900	1700
Units	Limit of detection	Accreditation Status			
%	0.1	NONE	< 0.1	< 0.1	< 0.1
%	0.01	NONE	12	28	15
kg	0.001	NONE	1.2	1.2	1.2
Type	N/A	ISO 17025	Not-detected	Not-detected	-
pH Units	N/A	MCERTS	8.1	7.2	8.2
mg/kg	1	MCERTS	< 1.0	< 1.0	-
mg/kg	50	MCERTS	-	-	200
%	0.005	MCERTS	-	-	0.020
1			0.022	0.015	
g/l	0.00125	MCERTS	0.023	0.015	0.010
ma/l	1 25	MCFRTS	-	-	10.3
				_	3.6
4					1.8
					100
					0.010
					< 0.5
				-	< 0.05
				- 12	< 0.05
					-
					-
					2.1
1119/1	,	NONE	-	-	< 5.0
ma/ka	1 1	MCEDIC			
mg/kg	1	MCERTS	< 1.0	2.7	-
/l	0.05	MCEDIC		0.05	
					-
					-
					-
4					-
					-
					-
					-
					-
			< 0.05	< 0.05	-
					-
			< 0.05	< 0.05	-
				< 0.05	-
mg/kg		MCERTS	< 0.05	< 0.05	-
mg/kg		MCERTS	< 0.05	< 0.05	-
mg/kg	0.05	MCERTS	< 0.05	< 0.05	-
		1105			
mg/kg	0.05	MCERTS	< 0.05	< 0.05	-
		MCERTS	< 0.05		-
	pH Units mg/kg mg/kg mg/k mg/k mg/kg mg/k mg/kg mg/k mg/k	%   0.1   %   0.01   kg   0.001   kg   0.001   kg   0.001   kg   0.001   kg   0.001   kg   0.001   kg   0.005   kg   0.005   kg   0.005   kg   0.005   kg   0.005   kg   0.005   kg   0.001   kg   0.005   kg   0.0	%         0.1         NONE           %         0.01         NONE           %         0.001         NONE           %         0.001         NONE           %         0.001         NONE           Type         N/A         ISO 17025           ISO 17025           ISO 17025           ISO 17025           MCERTS           mg/kg         50         MCERTS           mg/l         0.5         MCERTS           mg/lkg         0.5         MCERTS           mg/lkg         0.5         MCERTS           mg/lkg         0.5         MCERTS           mg/lk         0.05         MCERTS           N/A         0.001         MCERTS           ng/kg         0.1         MCERTS           ng/kg         0.1         MCERTS           ng/kg         2         NONE           MCERTS           mg/kg         0.05         MCERTS           mg/kg         0.05         MCERTS           mg/kg         0.05         MCERTS           mg/kg         0.05         MCERTS           mg/kg<	PH Units	0.30-0.50

MCERTS

mg/kg

0.8





Analytical Report Number: 21-95239-2 Project / Site name: Garth Wymott 2 Your Order No: P009538

Lab Sample Number		1986198	1986199	1986200		
Sample Reference				WS105	CBR115	WS105
Sample Number				1	1	9
Depth (m)	0.30-0.50	None Supplied	1.30-1.30			
Date Sampled	24/08/2021	24/08/2021	24/08/2021			
Time Taken	0900	0900	1700			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids					-	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	10	13	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.1	1.1	-
Boron (water soluble)	mg/kg	0.2	MCERTS	0.6	1.1	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	1.9	-
Chromium (III)	mg/kg	1	NONE	34	33	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	34	35	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	31	25	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	30	17	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	35	33	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	35	42	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	77	49	-
Magnesium (water soluble)	mg/kg	5	NONE	_	<u> </u>	9.7
Magnesium (leachate equivalent)	mg/l	2.5	NONE	-	-	4.9

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$ 





Analytical Report Number: 21-95239-2 Project / Site name: Garth Wymott 2

#### Your Order No: PO09538

Lab Sample Number				1986201
Sample Reference				SS1
Sample Number	None Supplied			
Depth (m)				None Supplied
Date Sampled				24/08/2021
Time Taken				0900
Analytical Parameter (Bulk Analysis)	Units	Limit of detection	Accreditation Status	
				Chrysotile-
Asbestos Identification	Туре	N/A	ISO 17025	Hard/Cement Type Material

U/S = Unsuitable Sample I/S = Insufficient Sample





Analytical Report Number : 21-95239-2 Project / Site name: Garth Wymott 2

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1986193	BH104	None Supplied	17.00-17.00	Brown clay.
1986194	BH102	None Supplied	7.50-7.50	Brown clay.
1986195	WS104	1	0.50-0.50	Brown loam and clay with gravel and vegetation.
1986196	SA104	1	0.20-0.20	Brown loam and clay with gravel and vegetation.
1986197	CBR118	1	0.10-0.10	Brown clay and sand with gravel and vegetation.
1986198	WS105	1	0.30-0.50	Brown loam and clay with gravel and vegetation.
1986199	CBR115	1	None Supplied	Brown loam and clay with gravel and vegetation.
1986200	WS105	9	1.30-1.30	Brown clay and loam.





Analytical Report Number : 21-95239-2 Project / Site name: Garth Wymott 2

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS	
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS	
Asbestos identification in Bulks	Asbestos Identification in bulk material with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	W	ISO 17025	
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025	
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS	
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS	
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS	
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS	
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L023	D	MCERTS	
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE	
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE	
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS	
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE	
Organic matter in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L023-PL	D	MCERTS	
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS	
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS	
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES.	In house method.	L038-PL	D	MCERTS	





Analytical Report Number : 21-95239-2 Project / Site name: Garth Wymott 2

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
Fraction Organic Carbon FOC Automated	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method	L009	D	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES.	In house method.	L038-PL	D	MCERTS
Water Soluble Nitrate (leachate equivalent)	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.





**Russell Sumner** 

Hydrock Consultants Ltd 4 Lakeside Festival Park Stoke on Trent ST1 5RY

t: 01782 261919 f: 01782 262020

e: Russellsumner@hydrock.com

Your order number:

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS** 

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

## **Analytical Report Number: 21-95639**

**Project / Site name:** Garth Wymott 2 Samples received on: 27/08/2021

Your job number: C19851 Samples instructed on/ 27/08/2021

Analysis started on:

Analysis completed by: 03/09/2021

**Report Issue Number:** 1 Report issued on: 03/09/2021

**Samples Analysed:** 3 bulk samples - 10 soil samples

PO09538

Signed:

Joanna Wawrzeczko

Technical Reviewer (Reporting Team)

Dawradio

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Analytical Report Number: 21-95639 Project / Site name: Garth Wymott 2 Your Order No: P009538

<u> </u>								
Lab Sample Number				1988688	1988689	1988690	1988692	1988694
Sample Reference				CBR105A	CBR113	CBR109	CBR101	CBR111
Sample Number				1	1	1	1	1
Depth (m)				0.60	0.30	0.30-0.40	0.40-0.60	0.20
Date Sampled				25/08/2021	25/08/2021	25/08/2021	25/08/2021	25/08/2021
Time Taken				0900	0900	0900	0900	0900
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	18	21	11	5.5	13
Total mass of sample received	kg	0.001	NONE	1.7	1.7	1.7	1.7	1.7
·								
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.9	7.4	7.5	7.8	7.6
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.031	0.0079	0.043	0.33	0.018
Equivalent)	_							
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.032	0.060	0.030	0.013	0.032
Total Phonols								
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
•	mg/kg							
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.31	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.46	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.45	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.33	0.40	0.32	5.1	0.34
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.7	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.42	0.59	0.50	12	1.3
Pyrene	mg/kg	0.05	MCERTS	0.45	0.52	0.47	12	1.4
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.33	0.32	0.31	7.3	0.98
Chrysene	mg/kg	0.05	MCERTS	0.28	0.28	0.28	5.3	0.88
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.23	0.29	< 0.05	7.2	1.2
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	3.9	0.68
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.21	0.22	< 0.05	7.0	1.4
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	4.8	0.76
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.2	0.20
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	5.2	0.89
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	2.25	2.62	1.88	73.7	9.96
	9/119	3.0			02		. 3	50
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	30	12	11	17	21
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	3.6	0.98	1.0	0.97	1.7
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	1.4	0.8	1.1	0.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	23	30	33	26	41
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23	30	33	27	41
Copper (aqua regia extractable)	mg/kg	1	MCERTS	110	28	43	130	65
Lead (aqua regia extractable)	mg/kg	1	MCERTS	44	38	42	90	96
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	63	28	31	33	47
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	62	36	35	37	53
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	83	61	79	320	170





Analytical Report Number: 21-95639 Project / Site name: Garth Wymott 2 Your Order No: PO09538

Lab Sample Number				1988688	1988689	1988690	1988692	1988694
Sample Reference				CBR105A	CBR113	CBR109	CBR101	CBR111
Sample Number				1	1	1	1	1
Depth (m)				0.60	0.30	0.30-0.40	0.40-0.60	0.20
Date Sampled				25/08/2021	25/08/2021	25/08/2021	25/08/2021	25/08/2021
Time Taken				0900	0900	0900	0900	0900
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates	<u>-</u>			_	-	3		3
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
Petroleum Hydrocarbons  TPH-CWG - Aliphatic >EC5 - EC6  TPH-CWG - Aliphatic >EC6 - EC8	mg/kg mg/kg	0.001	MCERTS MCERTS	-	-	-	-	-
				<del>-</del>	-	-	-	-
TPH-CWG - Aliphatic > EC10	mg/kg	0.001	MCERTS MCERTS		-		-	
TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
	mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35	mg/kg mg/kg	8	MCERTS	-	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	10	MCERTS					-
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE		_			_
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS					-
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE		_			_
c.r.c. Ampriduc (Eco. Ec. r.)	ilig/kg	10	HONE					
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	_	_	_	_	_
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	_	_	-	_	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	_	_	_	_	_
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	_	-	_	_	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic > EC16 - EC21	mg/kg	10	MCERTS	_	_	_	_	_
TPH-CWG - Aromatic > EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	-	-	-	-	-
·				•		•		
TPH Total C5 - C44	mg/kg	10	NONE	-	-	-	-	_

U/S = Unsuitable Sample I/S = Insufficient Sample





Analytical Report Number: 21-95639 Project / Site name: Garth Wymott 2 Your Order No: PO09538

Lab Sample Number				1988695	1988696	1988697	1988698	1988699
Sample Reference				CBR124	WS107	WS103	WS103	BH104
Sample Number				1	1	1	4	1
Depth (m)				0.20-0.30	0.30	0.20	1.00	0.50
Date Sampled				25/08/2021	25/08/2021	25/08/2021	25/08/2021	20/08/2021
Time Taken				0900	0900	0900	0900	0900
		Ē						
		Limit of detection	Accreditation Status					
Analytical Parameter	Units	of d	edi Stat					
(Soil Analysis)	ᅜ	ete	us					
		<u>₽</u>	9					
Stana Cantant	%	0.1	NONE	< 0.1	z 0.1	< 0.1	< 0.1	< 0.1
Stone Content  Moisture Content	%	0.01	NONE	12	< 0.1 11	11	16	< 0.1 16
Total mass of sample received	_			1.7	1.7	1.7	1.7	
Total Illass of Sample received	kg	0.001	NONE	1./	1./	1./	1./	1.0
Advantage to Call	T -		100 17005					
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	-
General Inorganics						0 -		1
pH - Automated	pH Units	N/A	MCERTS	7.8	8.1	8.0	7.8	-
Free Cyanide water Soluble SO4 16nr extraction (2:1 Leachate	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
Equivalent)	g/l	0.00125	MCERTS	0.017	0.040	0.018	0.019	-
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.042	0.034	0.017	0.0045	-
	.,,,,	2.001		3.312	5.551	0.017	0.0015	
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	_
Total Frictions (monority arie)	mg/kg	_	HICERTS	< 1.0	V 1.0	< 1.0	V 1.0	
Speciated PAHs								
Naphthalene	/l	0.05	MCERTS	0.22	< 0.05	< 0.05	< 0.05	
	mg/kg							-
Acenaphthylene	mg/kg	0.05	MCERTS	0.34	< 0.05	< 0.05	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Phenanthrene	mg/kg	0.05	MCERTS	1.2	0.79	< 0.05	< 0.05	-
Anthracene	mg/kg	0.05	MCERTS	0.69	< 0.05	< 0.05	< 0.05	-
Fluoranthene	mg/kg	0.05	MCERTS	5.8	0.91	< 0.05	< 0.05	-
Pyrene	mg/kg	0.05	MCERTS	6.5	0.82	< 0.05	< 0.05	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	3.6	0.45	< 0.05	< 0.05	-
Chrysene	mg/kg	0.05	MCERTS	3.2	0.37	< 0.05	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	4.3	0.41	< 0.05	< 0.05	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	2.4	0.27	< 0.05	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	5.2	0.49	< 0.05	< 0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	2.6	0.27	< 0.05	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.69	< 0.05	< 0.05	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	3.1	0.34	< 0.05	< 0.05	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	39.8	5.12	< 0.80	< 0.80	-
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	11	12	14	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.1	0.86	0.89	1.0	-
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	0.6	0.6	0.2	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.5	< 0.2	< 0.2	< 0.2	-
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	-
Chromium (III)	mg/kg	1	NONE	31	26	26	42	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	32	26	26	42	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	46	63	27	13	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	48	49	31	15	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	62	29	27	29	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
		1	MCERTS	38	27	32	49	-
Vanadium (aqua regia extractable)	mg/kg	1	PICERTS	30	2/	32	49	





Analytical Report Number: 21-95639 Project / Site name: Garth Wymott 2 Your Order No: PO09538

Lab Sample Number				1988695	1988696	1988697	1988698	1988699
Sample Reference				CBR124	WS107	WS103	WS103	BH104
Sample Number				1	1	1	4	1
Depth (m)				0.20-0.30	0.30	0.20	1.00	0.50
Date Sampled				25/08/2021	25/08/2021	25/08/2021	25/08/2021	20/08/2021
Time Taken				0900	0900	0900	0900	0900
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	3300	6300	3300	3300	3300
Monoaromatics & Oxygenates					-			
Benzene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
o-xylene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS		< 0.001	< 0.001	_	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	_	< 0.001	< 0.001	_	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	_	< 0.001	< 0.001	_	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	_	< 1.0	< 1.0	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	_	< 2.0	< 2.0	_	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	_	< 8.0	< 8.0	_	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	< 8.0	< 8.0	-	< 8.0
TPH-CWG - Aliphatic >EC16 - EC35	mg/kg	10	MCERTS	-	< 10	< 10	-	< 10
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	-	< 8.4	< 8.4	-	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	< 10	-	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	-	< 10	< 10	-	< 10
	*							
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	< 2.0	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	< 10	< 10	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	< 10	< 10	-	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	-	< 8.4	< 8.4	-	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	< 10	-	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	-	< 10	< 10	-	< 10
TPH Total C5 - C44	mg/kg	10	NONE	-	< 10	< 10	-	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample





Analytical Report Number: 21-95639 Project / Site name: Garth Wymott 2

### Your Order No: PO09538

Lab Sample Number				1988691	1988693	1988700
Sample Reference	CBR109	CBR101	BH107			
Sample Number	2	2	1			
Depth (m)				0.30	0.55	0.10-0.30
Date Sampled				25/08/2021	25/08/2021	25/08/2021
Time Taken				0900	0900	0900
Analytical Parameter (Bulk Analysis)	Units	Limit of detection	Accreditation Status			

				Chrysotile -	Chrysotile -	No Asbestos
	Type	N/A	ISO 17025	Hard/Cement	Hard/Cement	Detected
Asbestos Identification				Type Material	Type Material	Detected





### Analytical Report Number : 21-95639 Project / Site name: Garth Wymott 2

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1988688	CBR105A	1	0.6	Brown loam and clay with gravel and vegetation.
1988689	CBR113	1	0.3	Brown clay and loam with gravel and vegetation.
1988690	CBR109	1	0.30-0.40	Brown clay and loam with gravel and vegetation.
1988692	CBR101	1	0.40-0.60	Brown loam and clay with gravel and vegetation.
1988694	CBR111	1	0.2	Brown loam and clay with gravel and vegetation.
1988695	CBR124	1	0.20-0.30	Brown loam and clay with gravel and vegetation.
1988696	WS107	1	0.3	Brown loam and clay with gravel and vegetation.
1988697	WS103	1	0.2	Brown clay and loam with gravel and vegetation.
1988698	WS103	4	1	Brown clay and sand.
1988699	BH104	1	0.5	Brown clay and loam with gravel and vegetation.





Analytical Report Number : 21-95639 Project / Site name: Garth Wymott 2

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

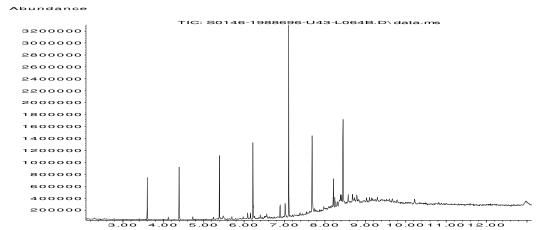
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in Bulks	Asbestos Identification in bulk material with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	W	ISO 17025
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE





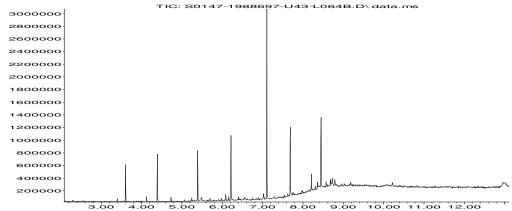
Analytical Report Number : 21-95639 Project / Site name: Garth Wymott 2

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

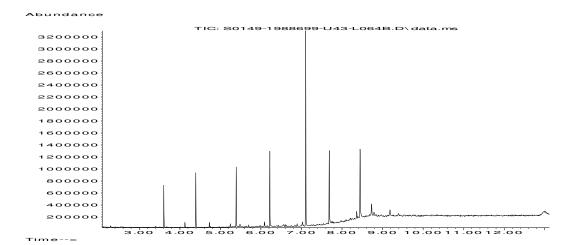

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Fraction Organic Carbon FOC Automated	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method	L009	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.


Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.




Time-->





Time-->







#### **Rob Crookes**

Hydrock Consultants Ltd 4 Lakeside Festival Park Stoke on Trent ST1 5RY

**t:** 01782 261919 **f:** 01782 262020

e: robcrookes@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

## **Analytical Report Number: 21-95906**

Project / Site name: Garth Wymott 2 Samples received on: 31/08/2021

Your job number: 19851 Samples instructed on/ 31/08/2021

Analysis started on:

Your order number: PO09538 Analysis completed by: 06/09/2021

Report Issue Number: 1 Report issued on: 06/09/2021

**Samples Analysed:** 2 bulk samples - 6 soil samples

Signed: Karoline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.





Analytical Report Number: 21-95906 Project / Site name: Garth Wymott 2

Your Order No: PO09538

Lab Sample Number				1990699	1990701	1990702	1990703	1990704
Sample Reference				1990699 BH107A	1990701 CT21	1990702 CT22	1990703 CT23	1990704 SA105
Sample Number				1 1	1	2	3	5A105
Depth (m)				0.40	0.25	0.25	0.10	0.30-0.50
Date Sampled				26/08/2021	27/08/2021	27/08/2021	27/08/2021	27/08/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time Taken	1	_	1	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		Limit of detection	Accreditation Status					
Analytical Parameter	ç	9,	cred Sta					
(Soil Analysis)	Units	det	dita					
		č <del>t</del> i	ion					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	19	13	24	9.8
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.2	1.2	2.0
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	-
General Inorganics								1
pH - Automated	pH Units	N/A	MCERTS	8.0	7.8	8.5	8.0	-
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.021	0.018	0.0044	0.015	-
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.032	0.031	0.013	0.055	_
- 3 ()				5.302	2.302	5.520	2.300	
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	_
Total Thereis (meneryane)		<u> </u>		11.0	110	11.0	1.0	<u>I</u>
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	_
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	_
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	_
Phenanthrene	mg/kg	0.05	MCERTS	0.44	< 0.05	< 0.05	< 0.05	_
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Fluoranthene	mg/kg	0.05	MCERTS	0.87	< 0.05	< 0.05	0.34	
Pyrene	mg/kg	0.05	MCERTS	0.84	< 0.05	< 0.05	0.35	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.53	< 0.05	< 0.05	< 0.05	_
Chrysene	mg/kg	0.05	MCERTS	0.33	< 0.05	< 0.05	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.36	< 0.05	< 0.05	< 0.05	_
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.29	< 0.05	< 0.05	< 0.05	_
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.42	< 0.05	< 0.05	< 0.05	_
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.25	< 0.05	< 0.05	< 0.05	_
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	_
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.29	< 0.05	< 0.05	< 0.05	_
- 3 (g) p - 1 /		<u> </u>		0.23	1 0.00	1 0.00	1 0.00	
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	4.62	< 0.80	< 0.80	< 0.80	-
				02	. 5.00	- 5.00	. 5.00	1
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	11	12	15	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.3	0.97	1.1	1.0	_
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	0.7	0.4	1.4	_
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	0.8	-
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	-
Chromium (III)	mg/kg	1	NONE	33	34	35	32	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	33	34	35	32	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	77	23	23	41	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	87	28	18	61	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.6	0.6	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	34	28	35	31	_
	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	_
Selenium (adua redia extractable)				~ 1.U	¬ 1.∪	~ 1.U	~ 1.U	
Selenium (aqua regia extractable) Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	41	35	36	35	_





Analytical Report Number: 21-95906 Project / Site name: Garth Wymott 2

Your Order No: PO09538

Lab Sample Number				1990699	1990701	1990702	1990703	1990704
Sample Reference				BH107A	CT21	CT22	CT23	SA105
Sample Number				1	1	2	3	1
Depth (m)				0.40	0.25	0.25	0.10	0.30-0.50
Date Sampled				26/08/2021	27/08/2021	27/08/2021	27/08/2021	27/08/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates	<u>-</u>		-				-	
Benzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
o-xylene	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	-	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	_	< 0.001	-	_	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	_	< 0.001	-	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	_	< 1.0	-	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	-	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	< 8.0	-	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	< 8.0	-	-	< 8.0
TPH-CWG - Aliphatic >EC16 - EC35	mg/kg	10	MCERTS	-	< 10	-	-	< 10
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	-	< 8.4	-	-	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	-	-	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	-	< 10	-	-	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	-	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0		-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	< 10	-	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	< 10	-	-	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	-	< 8.4	-	-	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	-	-	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	-	< 10	-	-	< 10
TPH Total C5 - C44	mg/kg	10	NONE	-	< 10	-	-	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample



Environmental Science

Analytical Report Number: 21-95906 Project / Site name: Garth Wymott 2

Your Order No: PO09538

Lab Sample Number		1990705		
Sample Reference	SA101			
Sample Number	1			
Depth (m)	0.30-0.40			
Date Sampled	27/08/2021			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	17
Total mass of sample received	kg	0.001	NONE	2.0

Asbestos in Soil	Type	N/A	ISO 17025	Not-detected

### **General Inorganics**

pH - Automated	pH Units	N/A	MCERTS	7.3
Free Cyanide	mg/kg	1	MCERTS	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.021
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.030

## Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0
----------------------------	-------	---	--------	-------

### Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.33
Anthracene	mg/kg	0.05	MCERTS	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.78
Pyrene	mg/kg	0.05	MCERTS	0.79
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.55
Chrysene	mg/kg	0.05	MCERTS	0.43
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.38
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.26
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.39
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.22
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.25

### Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	4.38	l
-----------------------------	-------	-----	--------	------	---

### Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	26
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.4
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2
Chromium (III)	mg/kg	1	NONE	29
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	29
Copper (aqua regia extractable)	mg/kg	1	MCERTS	49
Lead (aqua regia extractable)	mg/kg	1	MCERTS	46
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.7
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	33
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	40
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	84



Environmental Science

Analytical Report Number: 21-95906 Project / Site name: Garth Wymott 2

Your Order No: PO09538

Lab Sample Number		1990705		
Sample Reference				SA101
Sample Number	1			
Depth (m)	0.30-0.40			
Date Sampled	27/08/2021			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Monoaromatics & Oxygenates				
Benzene	μg/kg	1	MCERTS	-
Toluene	μg/kg	1	MCERTS	-
Ethylbenzene	μg/kg	1	MCERTS	-
p & m-xylene	μg/kg	1	MCERTS	-
o-xylene	μg/kg	1	MCERTS	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-

## **Petroleum Hydrocarbons**

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-
TPH-CWG - Aliphatic >EC16 - EC35	mg/kg	10	MCERTS	-
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	-

TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	-
·				

TPH Total C5 - C44 mg/kg	10		
TPH Total C5 - C44	10	NONE	-

U/S = Unsuitable Sample I/S = Insufficient Sample





Analytical Report Number: 21-95906 Project / Site name: Garth Wymott 2

Your Order No: PO09538

Tour Order No. P009556					
Lab Sample Number			1990700	1990706	
Sample Reference	BH107A	SA101			
Sample Number	None Supplied	2			
Depth (m)	0.15-0.90	0.35			
Date Sampled	26/08/2021	27/08/2021			
Time Taken				None Supplied	None Supplied
Analytical Parameter (Bulk Analysis)	Units	Limit of detection	Accreditation Status		

Asbestos Identification	Туре	N/A	ISO 17025	Chrysotile- Hard/Cement Type	No Asbestos Detected
/ SDESIOS TUENTINECTION	,,			Material	

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$ 





### Analytical Report Number : 21-95906 Project / Site name: Garth Wymott 2

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1990699	BH107A	1	0.4	Brown loam and clay with gravel and vegetation.
1990701	CT21	1	0.25	Brown clay and loam with gravel and vegetation.
1990702	CT22	2	0.25	Brown clay and loam with gravel and vegetation.
1990703	CT23	3	0.1	Brown clay and loam with gravel and vegetation.
1990704	SA105	1	0.30-0.50	Brown clay and loam with gravel and vegetation.
1990705	SA101	1	0.30-0.40	Brown clay and loam with gravel and vegetation.





Analytical Report Number : 21-95906 Project / Site name: Garth Wymott 2

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in Bulks	Asbestos Identification in bulk material with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	W	ISO 17025
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/deanup.	L076-PL	D	NONE

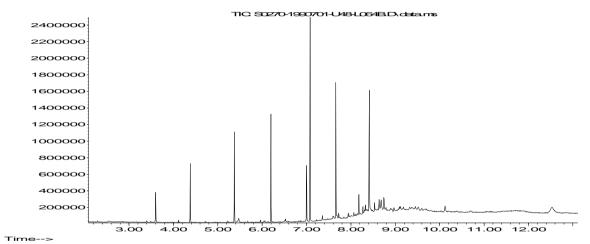




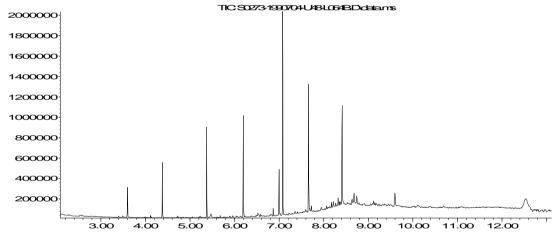
Analytical Report Number : 21-95906 Project / Site name: Garth Wymott 2

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Fraction Organic Carbon FOC Automated	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron $(II)$ sulphate.	In house method	L009	D	MCERTS


For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.


Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

#### Abundance



#### Abundance



Time-->



# **CLEA Datasheets**

						Soil Type	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG
	All values in	mg/kg unles	s otherwise	stated	Locati	on & Depth	WS104	SA104	CBR118	WS105	CBR115	CBR109	CBR111	WS107	BH107A	CT21	CT22	CT23	SA101	WS101E	WS101E	WS102E	WS106E	WS109E	WS109E	WS117E	WS125E	CBR105A
	7 til Valdoo ii	ring/kg ariico	5 Ott ICI WISC		Local	on a Deptin	0.5	0.2	0.1	0.3	0.2	0.3	0.2	0.30	0.40	0.25	0.25	0.10	0.3	0.10	2.30	0.10	1.20	0.10	0.80	0.20	0.10	0.60
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	0.0	0.2		0.0	0.2		0.2	0.00	0.10	0.20	0.20	5.1.5		0.10	2.00	0.110	20	5.1.5	0.00	0.20	5.1.0	
Arsenic	1	22	6.1	30	0	40	12	11	9.4	10	13	11	21	11	14	11	12	15	26	14	16	6.9	10	13	13	6.1	8.6	30
Beryllium	0.06	19	0.3	3.6	0	73	0.89	0.82	0.3	1.1	1.1	1	1.7	0.86	1.3	0.97	1.1	1	1.4	1.3	-	1.1	-	1.1	1	0.97	0.71	3.6
Boron	0.2	15	0.3	1.6	0	11000	0.7	0.2	0.2	0.6	1.1	0.8	0.9	0.6	0.7	0.7	0.4	1.4	0.2	0.7	-	0.8	-	1.6	-	0.2	0.3	0.5
Cadmium	0.2	1	0.8	0.8	0	87	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.8	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Chromium (III)	1	17	8.1	47	0	890	28	24	8.1	34	33	33	41	26	33	34	35	32	29	-	33	_	47	-	32	-	-	23
Chromium (VI)	1.2	1	1.9	1.9	0	6.1	1.2	1.2	1.2	1.2	1.9	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Copper	1	22	13	110	0	7300	26	55	13	31	25	43	65	63	77	23	23	41	49	35	29	23	30	60	89	16	29	110
Lead	2	22	9.6	110	0	310	75	68	9.6	30	17	42	96	49	87	28	18	61	46	51	15	15	20	70	110	13	23	44
Mercury, inorganic	0.3	3	0.6	0.7	0	240	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.6	0.6	0.3	0.7	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Nickel	2	22	6.2	63	0	180	28	25	6.2	35	33	31	47	29	34	28	35	31	33	31	38	44	54	35	35	31	22	63
Selenium	1	0	0	0	0	600	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Vanadium	1	19	8.2	62	0	1200	32	28	8.2	35	42	35	53	27	41	35	36	35	40	42	-	41	-	36	-	41	25	62
Zinc	2	22	16	170	0	40000	73	140	16	77	49	79	170	85	92	67	67	140	84	95	65	64	90	86	95	52	52	83
Cyanide (free)	1	0	0	0	0	800	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Phenol (total)	2	1	2.7	2.7	0	1300	1	1	1	1	2.7	1	1	1	1	1	1	1	1	-	1	_	1	-	1	-	-	1
Acenaphthene	0.05	1	0.24	0.24	0	4700	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.24	-	-	0.05	0.05	0.05	0.05	0.05	0.05
Acenaphthylene	0.05	0	0	0	0	4600	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	-	_	0.05	0.05	0.05	0.05	0.05	0.05
Anthracene	0.05	1	0.4	0.4	0	35000	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.4	-	_	0.05	0.05	0.05	0.05	0.05	0.05
Benz(a)anthracene	0.05	11	0.28	1.2	0	7.8	0.05	0.68	0.39	0.05	0.05	0.31	0.98	0.45	0.53	0.05	0.05	0.05	0.55	1.2	-	-	0.05	0.28	0.61	0.05	0.05	0.33
Benzo(a)pyrene	0.05	10	0.2	1.4	0	1.6	0.05	0.52	0.45	0.05	0.05	0.05	1.4	0.49	0.42	0.05	0.05	0.05	0.39	0.9	-	_	0.05	0.2	0.48	0.05	0.05	0.21
Benzo(b)fluoranthene	0.05	10	0.23	1.2	0	11	0.05	0.68	0.51	0.05	0.05	0.05	1.2	0.41	0.36	0.05	0.05	0.05	0.38	1.1	-	-	0.05	0.27	0.68	0.05	0.05	0.23
Benzo(ghi)perylene	0.05	7	0.25	0.89	0	72	0.05	0.61	0.45	0.05	0.05	0.05	0.89	0.34	0.29	0.05	0.05	0.05	0.25	0.51	-	-	0.05	0.05	0.05	0.05	0.05	0.05
Benzo(k)fluoranthene	0.05	9	0.19	0.68	0	16	0.05	0.55	0.3	0.05	0.05	0.05	0.68	0.27	0.29	0.05	0.05	0.05	0.26	0.33	-	_	0.05	0.19	0.25	0.05	0.05	0.05
Chrysene	0.05	11	0.21	0.88	0	16	0.05	0.72	0.46	0.05	0.05	0.28	0.88	0.37	0.33	0.05	0.05	0.05	0.43	0.81	-	-	0.05	0.21	0.45	0.05	0.05	0.28
Dibenz(a,h)anthracene	0.05	2	0.11	0.2	0	1.4	0.05	0.05	0.05	0.05	0.05	0.05	0.2	0.05	0.05	0.05	0.05	0.05	0.05	0.11	-	-	0.05	0.05	0.05	0.05	0.05	0.05
Fluoranthene	0.05	12	0.34	2.2	0	1600	0.05	1.6	0.93	0.05	0.05	0.5	1.3	0.91	0.87	0.05	0.05	0.34	0.78	2.2	-	-	0.05	0.44	0.97	0.05	0.05	0.42
Fluorene	0.05	1	0.15	0.15	0	3800	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.15	-	-	0.05	0.05	0.05	0.05	0.05	0.05
Indeno(1,2,3,cd)pyrene	0.05	7	0.22	0.76	0	6.6	0.05	0.47	0.31	0.05	0.05	0.05	0.76	0.27	0.25	0.05	0.05	0.05	0.22	0.45	-	-	0.05	0.05	0.05	0.05	0.05	0.05
Naphthalene	0.05	0	0	0	0	5.6	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	-	-	0.05	0.05	0.05	0.05	0.05	0.05
Phenanthrene	0.05	10	0.22	1.6	0	1500	0.05	0.57	0.46	0.05	0.05	0.32	0.34	0.79	0.44	0.05	0.05	0.05	0.33	1.6	-	-	0.05	0.22	0.05	0.05	0.05	0.33
Pyrene	0.05	12	0.35	2	0	3800	0.05	1.6	1	0.05	0.05	0.47	1.4	0.82	0.84	0.05	0.05	0.35	0.79	2	-	-	0.05	0.45	0.91	0.05	0.05	0.45
Asbestos identified	Y/N						N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
FOC (dimensionless)	0.032335	(mean)					0.053	0.043	0.0057	0.002	0.076	0.03	0.032	0.034	0.032	0.031	0.013	0.055	0.03	-	0.045	-	0.013	-	0.023	-	-	0.032
SOM (calculated)	5.57%	(mean)					9.14%	7.41%	0.98%	0.34%	13.10%	5.17%	5.52%	5.86%	5.52%	5.34%	2.24%	9.48%	5.17%	-	7.76%	-	2.24%	-	3.97%	-	-	5.52%
pH (su)	7.8	(mean)					7	7.8	8.7	8.1	7.2	7.5	7.6	8.1	8	7.8	8.5	8	7.3	-	7.7	-	6.8	-	7.9	-	-	7.9

Risk parameter: Human health - residential without plant uptake (2.5%SOM)

Data set: GENERAL MADE GROUND
Client: MINISTRY OF JUSTICE
Site: GARTH WYMOTT 2
Job no.: C19851

Legend: Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are

considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

# **Assessment of Chemicals of Potential Concern to Plant Life**



						Soil Type	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG
	All values ir	n mg/kg unles	s otherwise	stated	Locati	on & Depth	WS104	SA104	CBR118	WS105	CBR115	CBR109	CBR111	WS107	BH107A	CT21	CT22	CT23	SA101	WS101E	WS101E	WS102E	WS106E	WS109E	WS109E	WS117E	WS125E	CBR105A
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	0.5	0.2	0.1	0.3	0.2	0.3	0.2	0.30	0.40	0.25	0.25	0.10	0.3	0.10	2.30	0.10	1.20	0.10	0.80	0.20	0.10	0.60
Arsenic	1	22	6.1	30	0	250	12	11	9.4	10	13	11	21	11	14	11	12	15	26	14	16	6.9	10	13	13	6.1	8.6	30
Boron	0.2	15	0.3	1.6	0	3	0.7	0.2	0.2	0.6	1.1	0.8	0.9	0.6	0.7	0.7	0.4	1.4	0.2	0.7	-	0.8	-	1.6	-	0.2	0.3	0.5
Chromium (III)	1	17	8.1	47	0	400	28	24	8.1	34	33	33	41	26	33	34	35	32	29	-	33	-	47	-	32	-	-	23
Chromium (VI)	1.2	1	1.9	1.9	0	25	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Copper	1	22	13	110	0	200	26	55	13	31	25	43	65	63	77	23	23	41	49	35	29	23	30	60	89	16	29	110
Nickel	2	22	6.2	63	0	110	28	25	6.2	35	33	31	47	29	34	28	35	31	33	31	38	44	54	35	35	31	22	63
Zinc	2	22	16	170	0	300	73	140	16	77	49	79	170	85	92	67	67	140	84	95	65	64	90	86	95	52	52	83
	Mean																											
pH (su)	7.8						7	7.8	8.7	8.1	7.2	7.5	7.6	8.1	8	7.8	8.5	8	7.3	-	7.7	-	6.8	-	7.9	-	-	7.9

Risk parameter: Plant life pH >7

Data set: GENERAL MADE GROUND
Client: MINISTRY OF JUSTICE
Site: GARTH WYMOTT 2
Job no.: C19851

**Legend:** Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are

considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

# **Assessment of Chemicals of Potential Concern to Human Health**



						Soil Type	MG	MG	MG	MG					
	All values i	n mg/kg unles	ss otherwise	stated		Location & Depth	CBR101	WS111E	WS118E	WS123E					
						•	0.4	0.20	0.80	0.20					
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC									
Arsenic	1	4	12	24	0	40	17	12	24	12					
Beryllium	0.06	3	0.97	1.9	0	73	0.97	-	1.9	1.1					
Boron	0.2	3	0.3	2.4	0	11000	1.1	-	2.4	0.3					
Cadmium	0.2	3	0.4	0.8	0	87	0.2	0.4	0.8	0.6					
Chromium (III)	1	2	26	30	0	890	26	30	-	-					
Chromium (VI)	1.2	0	0	0	0	6.1	1.2	1.2	1.2	1.2					
Copper	1	4	27	130	0	7300	130	27	89	75					
Lead	2	4	34	100	0	310	90	43	100	34					
Mercury, inorganic	0.3	1	0.4	0.4	0	240	0.3	0.3	0.4	0.3					
Nickel	2	4	23	40	0	180	33	25	40	23					
Selenium	1	0	0	0	0	600	1	1	1	1					
Vanadium	1	3	37	49	0	1200	37	-	49	37					
Zinc	2	4	96	320	0	40000	320	96	180	130					
Cyanide (free)	1	0	0	0	0	800	1	1	1	1					
Phenol (total)	2	0	0	0	0	1300	1	1	-	-					
Acenaphthene	0.05	4	0.19	0.49	0	4700	0.46	0.36	0.19	0.49					
Acenaphthylene	0.05	3	0.24	3.8	0	4600	0.31	3.8	0.05	0.24					
Anthracene	0.05	4	0.27	3.1	0	35000	1.7	3.1	0.27	1.8					
Benz(a)anthracene	0.05	4	2.6	45	1	7.8	7.3	45	2.6	6.8					
Benzo(a)pyrene	0.05	4	2.8	70	4	1.6	7	70	2.8	5.5					
Benzo(b)fluoranthene	0.05	4	3.1	71	1	11	7.2	71	3.1	5.7					
Benzo(ghi)perylene	0.05	4	1.7	30	0	72	5.2	30	1.7	2.6					
Benzo(k)fluoranthene	0.05	4	1.6	26	1	16	3.9	26	1.6	2.5					
Chrysene	0.05	4	2	36	1	16	5.3	36	2	4.6					
Dibenz(a,h)anthracene	0.05	4	0.37	7	1	1.4	1.2	7	0.37	0.61					
Fluoranthene	0.05	4	3.8	60	0	1600	12	60	3.8	12					
Fluorene	0.05	4	0.14	0.71	0	3800	0.45	0.71	0.14	0.45					
Indeno(1,2,3,cd)pyrene	0.05	4	1.5	26	1	6.6	4.8	26	1.5	2.4					
Naphthalene	0.05	3	0.23	0.98	0	5.6	0.05	0.94	0.23	0.98					
Phenanthrene	0.05	4	1	5.3	0	1500	5.1	5.3	1	5.3					
Pyrene	0.05	4	3.8	77	0	3800	12	77	3.8	11					
Asbestos identified	Y/N						N	N	N	N					
FOC (dimensionless)	0.025	(mean)					0.013	0.037	-	-					
SOM (calculated)	4.31%	(mean)					2.24%	6.38%	-	-					
pH (su)	7.8	(mean)					7.8	7.7	-	-	<del>-</del>				

Risk parameter: Human health - residential without plant uptake (2.5%SOM)

Data set: PAHs HOTSPOTS
Client: MINISTRY OF JUSTICE
Site: GARTH WYMOTT 2

**Job no.:** C19851

**Legend:** Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate. Values in red are equal to, or greater than, the generic assessment criterion (GAC).

# **Assessment of Chemicals of Potential Concern to Human Health**



						Soil	Туре	TS	TS	TS	TS	TS	TS	TS	TS		
	All values i	in mg/kg unles	s otherwise	stated		Location & D	epth	WS103	CBR113	WS121E	WS104E	WS113E	WS114E	WS119E	WS120E		
							•	0.20	0.30	0.10	0.10	0.10	0.20	0.10	0.20		-
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC											
Arsenic	1	8	8.5	15	0	40		12	12	13	15	8.5	14	13	12		
Beryllium	0.06	6	0.64	1.2	0	73		0.89	0.98	-	1.2	0.64	1.1	1	-		
Boron	0.2	6	0.4	1.4	0	11000		0.6	1.4	-	0.9	1.1	0.4	0.6	-		
Cadmium	0.2	3	0.4	0.5	0	87		0.2	0.2	0.5	0.2	0.2	0.2	0.5	0.4		
Chromium (III)	1	4	26	39	0	890		26	30	39	-	-	-	-	38		
Chromium (VI)	1.2	0	0	0	0	6.1		1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2		
Copper	1	8	16	50	0	7300		27	28	42	50	16	27	42	33		
Lead	2	8	23	86	0	310		31	38	49	86	23	37	51	43		
Mercury, inorganic	0.3	1	0.4	0.4	0	240		0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.3		
Nickel	2	8	19	37	0	180		27	28	37	37	19	30	28	33		
Selenium	1	0	0	0	0	600		1	1	1	1	1	1	1	1		
Vanadium	1	6	29	43	0	1200		32	36	-	43	29	40	38	-		
Zinc	2	8	38	190	0	40000		73	61	98	190	38	73	110	91		
Cyanide (free)	1	0	0	0	0	800		1	1	1	1	1	1	1	1		
Phenol (total)	2	0	0	0	0	1300		1	1	1	1	1	1	1	1		
Acenaphthene	0.05	1	0.18	0.18	0	4700		0.05	0.05	0.18	0.05	0.05	0.05	0.05	0.05		
Acenaphthylene	0.05	0	0	0	0	4600		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05		
Anthracene	0.05	2	0.12	0.2	0	35000		0.05	0.05	0.05	0.12	0.05	0.05	0.2	0.05		
Benz(a)anthracene	0.05	6	0.23	1.3	0	7.8		0.05	0.32	0.23	0.8	0.05	0.35	1.3	0.33		
Benzo(a)pyrene	0.05	4	0.22	1	0	1.6		0.05	0.22	0.05	0.79	0.05	0.59	1	0.05		
Benzo(b)fluoranthene	0.05	4	0.29	1.3	0	11		0.05	0.29	0.05	0.9	0.05	0.52	1.3	0.05		
Benzo(ghi)perylene	0.05	3	0.32	0.56	0	72		0.05	0.05	0.05	0.56	0.05	0.32	0.47	0.05		
Benzo(k)fluoranthene	0.05	3	0.28	0.54	0	16		0.05	0.05	0.05	0.47	0.05	0.28	0.54	0.05		
Chrysene	0.05	6	0.17	0.77	0	16		0.05	0.28	0.17	0.57	0.05	0.39	0.77	0.34		
Dibenz(a,h)anthracene	0.05	1	0.12	0.12	0	1.4		0.05	0.05	0.05	0.12	0.05	0.05	0.05	0.05		
Fluoranthene	0.05	6	0.41	1.9	0	1600		0.05	0.59	0.41	1.2	0.05	0.57	1.9	0.94		
Fluorene	0.05	1	0.12	0.12	0	3800		0.05	0.05	0.12	0.05	0.05	0.05	0.05	0.05		
Indeno(1,2,3,cd)pyrene	0.05	3	0.3	0.49	0	6.6		0.05	0.05	0.05	0.49	0.05	0.3	0.44	0.05		
Naphthalene	0.05	0	0	0	0	5.6		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05		
Phenanthrene	0.05	5	0.24	0.72	0	1500		0.05	0.4	0.24	0.44	0.05	0.05	0.72	0.59		
Pyrene	0.05	6	0.4	1.7	0	3800		0.05	0.52	0.4	1.1	0.05	0.69	1.7	0.81		
Asbestos identified	Y/N							N	N	N	N	N	N	N	N		
FOC (dimensionless)	0.041	(mean)						0.017	0.06	0.061	-	-	-	-	0.026		
SOM (calculated)	7.07%	(mean)						2.93%	10.34%	10.52%	-	-	-	-	4.48%		
pH (su)	7.1	(mean)						8	7.4	6.4	-	-	-	-	6.7		

Risk parameter: Human health - residential without plant uptake (2.5%SOM)

Data set: TOPSOIL

Client: MINISTRY OF JUSTICE Site: GARTH WYMOTT 2

**Job no.:** C19851

**Legend:** Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are

considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate. Values in red are equal to, or greater than, the generic assessment criterion (GAC).

MG denotes Made Ground

NAT denotes natural ground

# **Assessment of Chemicals of Potential Concern to Plant Life**

Hydrock

						Soil Type	TS	TS	TS	TS	TS	TS	TS	TS		
	All values i	in mg/kg unles	ss otherwise	stated	Locati	on & Depth	WS103	CBR113	WS121E	WS104E	WS113E	WS114E	WS119E	WS120E		
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	0.20	0.30	0.10	0.10	0.10	0.20	0.10	0.20		
Arsenic	1	8	8.5	15	0	250	12	12	13	15	8.5	14	13	12		
Boron	0.2	6	0.4	1.4	0	3	0.6	1.4	-	0.9	1.1	0.4	0.6	-		
Chromium (III)	1	4	26	39	0	400	26	30	39	-	-	-	-	38		
Chromium (VI)	1.2	0	0	0	0	25	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2		
Copper	1	8	16	50	0	135	27	28	42	50	16	27	42	33		
Nickel	2	8	19	37	0	75	27	28	37	37	19	30	28	33		
Zinc	2	8	38	190	0	300	73	61	98	190	38	73	110	91		
	Mean															
pH (su)	7.1						8	7.4	6.4	-	-	-	-	6.7		

Risk parameter: Plant life pH 7

Data set: TOPSOIL

Client: MINISTRY OF JUSTICE Site: GARTH WYMOTT 2

Job no.: C19851

**Legend:** Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are

considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

# **Assessment of Chemicals of Potential Concern to Human Health**



							Soil Type NAT	NAT	NAT	NAT			
	All values i	n mg/kg unles	s otherwise	stated		Location	& Depth WS10	3 WS124E	WS103E	WS116E			
							1.00	1.10	1.10	0.70			
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC							
Arsenic	1	4	4.3	14	0	40	14	12	12	4.3			
Beryllium	0.06	1	1	1	0	73	1	-	-	-			
Boron	0.2	0	0	0	0	11000	0.2	-	-	-			
Cadmium	0.2	1	0.3	0.3	0	87	0.2	0.2	0.2	0.2			
Chromium (III)	1	4	23	42	0	890	42	33	23	28			
Chromium (VI)	1.2	0	0	0	0	6.1	1.2	1.2	1.2	1.2			
Copper	1	4	12	40	0	7300	13	29	40	12			
Lead	2	4	12	30	0	310	15	19	30	12			
Mercury, inorganic	0.3	0	0	0	0	240	0.3	0.3	0.3	0.3			
Nickel	2	4	25	32	0	180	29	32	31	25			
Selenium	1	0	0	0	0	600	1	1	1	1			
Vanadium	1	1	49	49	0	1200	49	-	-	-			
Zinc	2	4	32	69	0	40000	48	54	69	32			
Cyanide (free)	1	0	0	0	0	800	1	1	1	1			
Phenol (total)	2	0	0	0	0	1300	1	1	1	1			
Acenaphthene	0.05	0	0	0	0	4700	0.05	0.05	-	0.05			
Acenaphthylene	0.05	0	0	0	0	4600	0.05	0.05	-	0.05			
Anthracene	0.05	0	0	0	0	35000	0.05	0.05	-	0.05			
Benz(a)anthracene	0.05	1	0.39	0.39	0	7.8	0.05	0.39	-	0.05			
Benzo(a)pyrene	0.05	1	0.28	0.28	0	1.6	0.05	0.28	-	0.05			
Benzo(b)fluoranthene	0.05	1	0.31	0.31	0	11	0.05	0.31	-	0.05			
Benzo(ghi)perylene	0.05	0	0	0	0	72	0.05	0.05	-	0.05			
Benzo(k)fluoranthene	0.05	1	0.24	0.24	0	16	0.05	0.05	-	0.05			
Chrysene	0.05	1	0.3	0.3	0	16	0.05	0.3	-	0.05			
Dibenz(a,h)anthracene	0.05	0	0	0	0	1.4	0.05	0.05	-	0.05			
Fluoranthene	0.05	1	0.57	0.57	0	1600	0.05	0.57	-	0.05			
Fluorene	0.05	0	0	0	0	3800	0.05	0.05	-	0.05			
Indeno(1,2,3,cd)pyrene	0.05	0	0	0	0	6.6	0.05	0.05	-	0.05			
Naphthalene	0.05	0	0	0	0	5.6	0.05		-	0.05			
Phenanthrene	0.05	1	0.33	0.33	0	1500	0.05	0.33	-	0.05			
Pyrene	0.05	1	0.54	0.54	0	3800	0.05	0.54	-	0.05			
Asbestos identified	Y/N						N	N	N	N			
FOC (dimensionless)	0.013875	(mean)					0.004	5 0.006	0.042	0.003			
SOM (calculated)	2.39%	(mean)					0.789	6 1.03%	7.24%	0.52%			
pH (su)	8.1	(mean)					7.8	8.7	7.8	8.1			

Risk parameter: Human health - residential without plant uptake (2.5%SOM)

Data set: NATURAL

Client: MINISTRY OF JUSTICE Site: GARTH WYMOTT 2

**Job no.:** C19851

**Legend:** Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

# **Assessment of Chemicals of Potential Concern to Plant Life**



						Soil Type	NAT	NAT	NAT	NAT				
	All values i	in mg/kg unles	ss otherwise	stated	Location	on & Depth	WS103	WS124E	WS103E	WS116E				
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	1.00	1.10	1.10	0.70				
Arsenic	1	4	4.3	14	0	250	14	12	12	4.3				
Boron	0.2	0	0	0	0	3	0.2	-	-	-				
Chromium (III)	1	4	23	42	0	400	42	33	23	28				
Chromium (VI)	1.2	0	0	0	0	25	1.2	1.2	1.2	1.2				
Copper	1	4	12	40	0	200	13	29	40	12				
Nickel	2	4	25	32	0	110	29	32	31	25				
Zinc	2	4	32	69	0	300	48	54	69	32				
	Mean													
pH (su)	8.1						7.8	8.7	7.8	8.1				

Risk parameter: Plant life pH >7

Data set: NATURAL

Client: MINISTRY OF JUSTICE Site: GARTH WYMOTT 2

**Job no.:** C19851

Legend: Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are

considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

						Soil Type	MG	MG	MG	TS	MG					
		All values in	mg/kg unle	ss otherwis	e stated <b>Locat</b> i			SA105	WS107	WS103	BH104					
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	0.25	0.3	0.3	0.2	0.5					
Aliphatics EC5-EC6	0.001	0	0	0	0	78	0.001	0.001	0.001	0.001	0.001					
Aliphatics >EC6-EC8	0.001	0	0	0	0	230	0.001	0.001	0.001	0.001	0.001					
Aliphatics >EC8-EC10	0.001	0	0	0	0	65	0.001	0.001	0.001	0.001	0.001					
Aliphatics >EC10-EC12	1	0	0	0	0	120	1	1	1	1	1					
Aliphatics >EC12-EC16	2	0	0	0	0	59	2	2	2	2	2					
Aliphatics >EC16-EC35	8	0	0	0	0	93000	8	8	8	8	8					
Aliphatics >EC35-EC44	10	0	0	0	0	93000	10	10	10	10	10					
Aromatics EC5-EC7	1	0	0	0	0	690	1	1	1	1	1					
Aromatics >EC7-EC8	0.001	0	0	0	0	1800	0.001	0.001	0.001	0.001	0.001					
Aromatics >EC8-EC10	0.001	0	0	0	0	120	0.001	0.001	0.001	0.001	0.001					
Aromatics >EC10-EC12	1	0	0	0	0	590	1	1	1	1	1					
Aromatics >EC12-EC16	2	0	0	0	0	2300	2	2	2	2	2					
Aromatics >EC16-EC21	10	0	0	0	0	1900	10	10	10	10	10					
Aromatics >EC21-EC35	10	0	0	0	0	1900	10	10	10	10	10					
Aromatics >EC35-EC44	8.4	0	0	0	0	1900	8.4	8.4	8.4	8.4	8.4					
					ADDITIVI"	TY CHECK	HAZARD (	QUOTIENTS	FOR EAC	H FRACTIO	N					
					Aliphati	cs EC5-EC6	0.000	0.000	0.000	0.000	0.000					
						s >EC6-EC8		0.000	0.000	0.000	0.000					
					Aliphatics	>EC8-EC10	0.000	0.000	0.000	0.000	0.000					
			Conside	red additive	Aliphatics >	EC10-EC12	0.008	0.008	0.008	0.008	0.008					
					Aliphatics >	EC12-EC16	0.034	0.034	0.034	0.034	0.034					
					Aliphatics >	EC16-EC35	0.000	0.000	0.000	0.000	0.000					
					Aliphatics >	EC35-EC44	0.000	0.000	0.000	0.000	0.000					
					Aromati	cs EC5-EC7	0.001	0.001	0.001	0.001	0.001					
					Aromatic	s >EC7-EC8	0.000	0.000	0.000	0.000	0.000					
					Aromatics	>EC8-EC10	0.000	0.000	0.000	0.000	0.000					
			Conside	red additive	Aromatics >	EC10-EC12	0.002	0.002	0.002	0.002	0.002					
					Aromatics >	EC12-EC16	0.001	0.001	0.001	0.001	0.001					
						EC16-EC21	0.005	0.005	0.005	0.005	0.005					
			Conside	red additive	Aromatics >	EC21-EC35	0.005	0.005	0.005	0.005	0.005					
						EC35-EC44		0.004	0.004	0.004	0.004					
					zard Index for	_	0.042	0.042	0.042	0.042	0.042					
					ard Index for	_	0.003	0.003	0.003	0.003	0.003					
				Haza	rd Index for a	ro>C16-C35	0.011	0.011	0.011	0.011	0.011					
									Hozord Ind	ov toble H	L = 1 10 = = =	 iahliahted v	بيبوالمبر طئني	la a di a a	•	

Risk parameter: Human health - residential without plant uptake (2.5%SOM)

Data set: ALL DATA

Client: MINISTRY OF JUSTICE Site: GARTH WYMOTT 2 Job no.: C19851 Hazard Index table - HI or HQ greater than 1 highlighted with yellow shading.

**Legend:** Main table values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Main table alues in red are equal to, or greater than, the generic assessment criterion (GAC).

		_		_																		
	Includes risk assessment fractions	GAC (mg/kg) Residential without plant uptake 2.5% SOM	Lowest GAC from list (mg/kg)	Laboratory results (mg/kg)																		
Determinand				Reporting Limit (mg/kg)	WS101E						WS111E V						WS119E	WS120E		WS123E	WS124E	
					0.1	2.3	0.1	0.8	0.1	0.8	1	0.1	0.2	0.7	0.2	0.8	0.1	0.2	0.1	0.2	1.1	0.1
EC5-EC6	Ali EC5-EC6 Aro EC5-EC7	78 690	78	0.01	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
>EC6-EC7	Ali >EC6-EC8 Aro EC5-EC7	230 690	230	0.01	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
>EC7-EC8	Ali >EC6-EC8 Aro >EC7-EC8	230 1800	230	0.01	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
>EC8-EC10	Ali >EC8-EC10 Aro >EC8-EC10	65 120	65	0.01	2	2	2	70	2	2	7.7	2	2	2 2	2	2	. 2	2 2	2	9.3	2.5	12
>EC10-EC12	Ali >EC10-EC12 Aro >EC10-EC12	120 590	120	1	4	4	4	2700	4	4	32	4	4	4	4	80	4	1 4	. 4	15	12	25
>EC12-EC16	Ali >EC12-EC16 Aro >EC12-EC16	59 2300	- 59	1	15	1	10	9400	1	1	170	1	1	1	1	110	6.9	9 1	1	44	16	25
>EC16-EC21	Ali >EC16-EC35 Aro >EC16-EC21	93000 1900	1900	1	39	1	37	3400	1	1	410	1	1	1	1	170	14	1 1	1	88	45	59
>EC21-EC35	Ali >EC16-EC35 Aro >EC21-EC35	93000 1900	1900	1	10	10	10	120	10	10	22	10	10	10	10	26	10	10	10	19	10	12
>EC35-EC40	Ali >EC35-EC44 Aro >EC35-EC44	93000 1900	1900	1	55	10	49	16000	10	10	650	10	10	10	10	380	22	10	10	190	80	160
Data set	t: ALL DATA			Red text	denotes sa	imple at or	below rep	orting limit	t													
Client	t: MINISTRY OF JUSTIC	CE	Yel	llow shading	dentoes ex	ceedance	of the GAC	or Hazard	I Index >1													
Site	e: GARTH WYMOTT 2			_ [																		
Job no.	.: C-19851																					
Additivity check																						
Consid	lered potentially additive	>EC8-EC10	Hazard Qu		0.031	0.031	0.031	1.077	0.031	0.031	0.118	0.031	0.031		0.031	0.031						
		>EC10-EC12	Hazard Qu		0.033	0.033	0.033	22.500	0.033	0.033	0.267	0.033	0.033		0.033	0.667						
		>EC12-EC16	Hazard Qu		0.254	0.017	0.169	159.322	0.017	0.017	2.881	0.017	0.017		0.017	1.864						
			Hazard Inc		0.318	0.081	0.234	182.899	0.081	0.081	3.266	0.081	0.081		0.081	2.562				_		
Consid	lered potentially additive	>EC16-EC21	Hazard Qu		0.021	0.001	0.019	1.789	0.001	0.001	0.216	0.001	0.001		0.001	0.089						
		>EC21-EC35	Hazard Qu		0.005	0.005	0.005	0.063	0.005	0.005	0.012	0.005	0.005		0.005	0.014					0.005	0.006
			Hazard Inc	dex	0.026	0.006	0.025	1.853	0.006	0.006	0.227	0.006	0.006	0.006	0.006	0.103	0.013	0.006	0.006	0.056	0.029	0.037









**Russell Sumner** 

Hydrock Consultants Ltd 4 Lakeside Festival Park Stoke on Trent ST1 5RY

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS** 

t: 01782 261919

t: 01923 225404 f: 01782 262020 f: 01923 237404 e: Russellsumner@hydrock.com

e: reception@i2analytical.com

## **Analytical Report Number: 21-15081**

**Project / Site name:** Garth Wymott 2 Samples received on: 07/10/2021

Your job number: C-19851-C Samples instructed on/ 07/10/2021

Analysis started on:

PO10473 Your order number: Analysis completed by: 14/10/2021

**Report Issue Number:** Report issued on: 14/10/2021

Samples Analysed: 4 water samples

> Dawradio Signed:

Joanna Wawrzeczko

Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Total Phenols (monohydric)

Lab Sample Number		2039906	2039907	2039908	2039909		
Sample Reference				BH106	BH103	BH107A	BH108
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)			7.00-7.00	4.00-4.00	4.00-4.00	4.50-4.50	
Date Sampled		06/10/2021	06/10/2021	06/10/2021	06/10/2021		
Time Taken		0930	1300	1430	1100		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
General Inorganics							
pH	pH Units	N/A	ISO 17025	7.5	7.5	7.2	7.4
Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	1700	930	1100	900
Total Cyanide (Low Level 1 µg/l)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Free Cyanide (Low Level 1 µg/l)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Sulphate as SO4	μg/l	45	ISO 17025	2370000	373000	566000	112000
Chloride	mg/l	0.15	ISO 17025	35	29	24	18
Fluoride	μg/l	50	ISO 17025	210	210	120	200
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	130	3000	10000	4000
Ammoniacal Nitrogen as NH3	μg/l	15	ISO 17025	160	3600	12000	4800
Ammoniacal Nitrogen as NH4	μg/l	15	ISO 17025	170	3800	13000	5100
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	2.75	8.93	10.0	13.9
Nitrate as N	mg/l	0.01	ISO 17025	0.22	0.19	0.13	0.14
Nitrate as NO3	mg/l	0.05	ISO 17025	0.98	0.83	0.57	0.62
Nitrite as N	μg/l	1	ISO 17025	1.0	< 1.0	3.0	< 1.0
Nitrite as NO2	μg/l	5	ISO 17025	< 5.0	< 5.0	9.8	< 5.0
	mgcaco 3/I	1	ISO 17025	2130	771	909	523
Hardness - Total		0.002	ISO 17025				

ISO 17025

μg/l

6.4





#### Your Order No: PO10473

Your Order No: PO10473							
Lab Sample Number		2039906	2039907	2039908	2039909		
Sample Reference				BH106	BH103	BH107A	BH108
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		7.00-7.00	4.00-4.00	4.00-4.00	4.50-4.50		
Date Sampled		06/10/2021	06/10/2021	06/10/2021	06/10/2021		
Time Taken		0930	1300	1430	1100		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Speciated PAHs							
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
PAH Sums		ı					
Sum of Benzo(b)fluoranthene & Benzo(k)fluoranthene	μg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene	μg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene	μg/l	0.04	NONE	< 0.040	< 0.040	< 0.040	< 0.040
Total PAH							
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16





#### Your Order No: PO10473

Your Order No: PO10473								
Lab Sample Number		2039906	2039907	2039908	2039909			
Sample Reference				BH106	BH103	BH107A	BH108	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				7.00-7.00	4.00-4.00	4.00-4.00 06/10/2021	4.50-4.50	
Date Sampled				06/10/2021	06/10/2021	06/10/2021		
Time Taken				0930	1300	1430	1100	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Boron (dissolved)	μg/l	10	ISO 17025	370	280	270	170	
Calcium (dissolved)	mg/l	0.012	ISO 17025	650	200	250	140	
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	
Chromium (III)	μg/l	1	NONE	< 1.0	4.4	5.5	3.9	
Iron (dissolved)	mg/l	0.004	ISO 17025	0.019	0.24	0.024	0.12	
Iron (dissolved)	μg/l	4	ISO 17025	19	240	24	120	
Magnesium (dissolved)	mg/l	0.005	ISO 17025	120	68	69	43	
Sodium (dissolved)	mg/l	0.01	ISO 17025	250	96	120	62	
Aluminium (dissolved)	μg/l	1	ISO 17025	3.7	2.4	7.0	3.0	
Antimony (dissolved)	μg/l	0.4	ISO 17025	0.6	0.5	< 0.4	0.5	
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.35	7.48	2.48	5.70	
Barium (dissolved)	μg/l	0.06	ISO 17025	54	100	210	200	
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.05	< 0.02	< 0.02	< 0.02	
Chromium (dissolved)	μg/l	0.2	ISO 17025	1.0	4.4	5.5	3.9	
Cobalt (dissolved)	μg/l	0.2	ISO 17025	2.8	3.0	4.3	2.2	
Copper (dissolved)	μg/l	0.5	ISO 17025	2.9	< 0.5	0.9	< 0.5	
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	
Manganese (dissolved)	μg/l	0.05	ISO 17025	1300	1700	2200	1600	
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	
Nickel (dissolved)	μg/l	0.5	ISO 17025	11	6.3	15	3.1	
Selenium (dissolved)	μg/l	0.6	ISO 17025	1.9	2.1	2.3	1.2	
Silver (dissolved)	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Tin (dissolved)	μg/l	0.2	ISO 17025	0.34	0.24	0.32	0.24	
Vanadium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	
Zinc (dissolved)	μg/l	0.5	ISO 17025	8.2	2.7	5.9	4.1	
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	-	< 1.0	< 1.0	-	
Toluene	μg/l	1	ISO 17025	-	< 1.0	< 1.0	-	
Ethylbenzene	μg/l	1	ISO 17025	-	< 1.0	< 1.0	-	
p & m-xylene	μg/l	1	ISO 17025	-	< 1.0	< 1.0	-	
o-xylene	μg/l	1	ISO 17025	-	< 1.0	< 1.0	-	
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	-	< 1.0	< 1.0	-	
Sum of m, p & o-Xylene	μg/l	2	ISO 17025	-	< 2.0	< 2.0	-	





#### Your Order No: PO10473

Lab Sample Number				2039906	2039907	2039908	2039909
Sample Number		2039906 BH106	2039907 BH103	2039908 BH107A	2039909 BH108		
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
		7.00-7.00	4.00-4.00	4.00-4.00	4.50-4.50		
Depth (m) Date Sampled		06/10/2021	06/10/2021	06/10/2021	06/10/2021		
•			, . , .	, -, -			
Time Taken	_		ı	0930	1300	1430	1100
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025		< 1.0	< 1.0	-
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	-	< 1.0	< 1.0	-
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	-	< 1.0	< 1.0	-
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	-	230	94	-
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	-	52	35	-
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	-	< 10	< 10	-
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	-	< 10	< 10	-
TPH-CWG - Aliphatic >C16 - C35	μg/l	10	NONE	-	< 10	< 10	-
TPH-CWG - Aliphatic >C35 - C44	μg/l	10	NONE	-	< 10	< 10	-
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	-	280	130	-
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	ı	280	130	-
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	-	< 1.0	< 1.0	-
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	-	< 1.0	< 1.0	-
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	-	< 1.0	< 1.0	-
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	-	82	< 10	-
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	-	34	< 10	-
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	-	< 10	< 10	-
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	-	< 10	< 10	-
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	-	< 10	< 10	-
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	-	120	< 10	-
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE		120	< 10	-



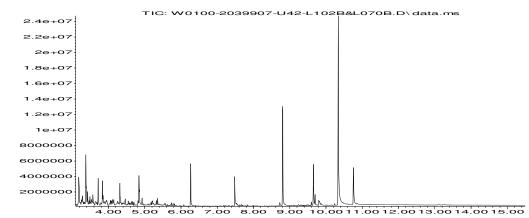


Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	W	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Monohydric phenols in water - LOW LEVEL 1 ug/l	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Speciated EPA-16 PAHs in water (LOW LEVEL Dets)	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270 (low level)	L102B-PL	W	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE

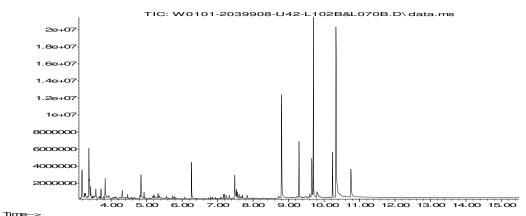





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonia as NH3 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
TPH Chromatogram in Water	TPH Chromatogram in Water.	In-house method	L070-PL	W	NONE
Cr (III) in water	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
Low level total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
Free cyanide (low level) in water	Determination of free cyanide by distillation followed by colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	W	ISO 17025
Specific PAH sums in water	Determination of PAH compounds in water by extraction in hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L070-PL	W	NONE
Chloride in water	Determination of Chloride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.
For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.
Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.


Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

#### Abundance



I ime-->

#### Abundance





## RTM Datasheets



Hydrock Scenario: Scenario B - EQS (inland) 2013/39/EU Annex I RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples **P**= priority substance PH = priority hazardous substances.

WFD Designation (2015 Directions)

OP = Other substance identical to previous legislation Water body receptor(s): Groundwater and surface water Secondary receptor(s):

Data set: Groundwater PNEC calculated (inland EQS) Client: Ministry of SP = Specific Pollutant Justice Site: Garth Wymott 2 Job no: C19851 JAGDAG Hazardous Substances Determination (UK) Hazardous substance Test Certificates(s): 21-15081-1

Dataset ALL ZONES Non-hazardous pollutant (blank) Not included in assessment

	Dataset	ALL ZONES											(blank)	Not included in assessment
CAS / AGS	Chemicals of Potential Concern	WFD	Hazardous Substance			Summary of	Sample Data			Value Being Compared to Target =	Water Quality Target (Exceeded if Red	No. Samples Exceeding Water Quality Target	No. Samples above LoD Exceeding Water Quality	Notes
Number	(concentrations in μg/l)	Designation	Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value	Inland Waters EQS	Inland Waters EQS	Inland Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
7440-22-4	Silver (Ag) (dissolved)			4	0	0.05	< 0.05	< 0.05	<0.05	< 0.05	0.05	0	0	
7429-90-5	Aluminium (Al) (dissolved)			4	4	1	2.4	7	6.505	7	n/a			
7440-38-2		SP	H NP	8	8	0.15	0.35 170	7.48 370	6.857 356.5	7.48 370	50 2000	0	0	
7440-42-8 7440-39-3	Boron (B) (dissolved) Barium (Ba) (dissolved)		INP	4	4	0.06	54	210	208.5	210	n/a	U	U	
7440-43-9	_\	PH	NP		•	0.00		2.0	200.0	2.0	1170			
				8	5	0.02	<0.02	0.05	0.05	0.05	0.08	0	0	EQS (inland) dependent on hardness of receiving surface water environment
7440-48-4	Cobalt (Co) (dissolved)		NP	4	4	0.2	2.2	4.3	4.105	4.3	3	1	1	
	Chromium (VI) (Cr) (dissolved) Chromium (III) (Cr) (dissolved)	SP SP	Н	8	Ω	5	<5 3.9	<5 6.7	<5 6.42	<5 6.7	3.4	8 5	5	
7440-47-3	Chromium (Cr) (total) (dissolved)	01		8	2	, , , , , , , , , , , , , , , , , , ,	3.9	6.7	6.42	6.7				
440-50-8	Copper (Cu) (dissolved)	SP	NP	8	6	0.5	<0.5	7.4	7.12	7.4	n/a <b>1</b>	5	5	Bioavailable EQS (inland)
439-89-6		SP		4	4	4	19	240	222	240	1000	0	0	
	-i	PH	Н	8	0	0.05	< 0.05	<0.05	< 0.05	<0.05	0.07	0	0	
P1286	<u> </u>	SP		8	8	0.05	0.34	2200	2025	2200	123	5	5	Bioavailable EQS (inland)
7440-23-5 7440-02-0	Sodium (Na) (dissolved) Nickel (Ni) (dissolved)	P	NP	8	4 8	10 0.5	62000 3.1	250000 15	230500 13.6	250000 15	n/a 4	5	5	Bioavailable EQS (inland)
440-02-0 439-92-1	Lead (Pb) (dissolved)	P	Н	8	0	0.3	<0.2	<0.2	<0.2	<0.2	1.2		0	Bioavailable EQS (inland)
440-36-0	Antimony (Sb) (dissolved)		NP	4	3	0.4	<0.4	0.6	0.585	0.6	n/a			
782-49-2	Selenium (Se) (dissolved)		NP	8	7	0.6	<0.6	32	22.025	32	n/a			
7440-31-5	Tin (Sn) (dissolved)			4	4	0.2	0.24	0.34	0.337	0.34	25	0	0	
7440-62-2	Vanadium (V) (dissolved)		WATER CONTRACTOR CONTR		0	0.2	<0.2	<0.2	<0.2	<0.2	20	0	0	EQS (inland) dependent on hardness of receiving surface water environment
440-66-6	Zinc (Zn) (dissolved)	L SP	NP	8	8	0.2	2.7	9.2	8.85	9.2	12.3	0	0	Bioavailable EQS (inland) + ambient background concentration (ABC)
P1095	Cyanide (free) (hydrogen cyanide)	_	NP						0.00	J				
	, , , , ,			8	0	1	<1	<1	<1	<1	1	0	0	
	Cyanide (total)		ļ	8	0	1	<1	<1	<1	<1	n/a			
	Ammonium (NH ₄ ⁺ ) Ammnoniacal Nitrogen (as N)		NP NP	4	4	15 15	170 130	13000 10000	11815 9100	13000 10000	n/a 300	3	3	
	Ammonia (unionised) (NH ₃ as N)	SP	NP	4	4							3	3	
15541-45-4	{free ammonia} Bromate (BrO ₃ )			<u>4</u> Δ	4	15 2	160 <2	12000 <2	10920	12000 <2	n/a n/a			-
	Chloride (Cl ⁻ )			4	4	150	18000	35000	34100	35000	250000	0	0	
	Fluoride (F ⁻ )					_								
P1348	Nitrate (NO ₃ ⁻ )			4	4	50	120 570	210 980	210 957.5	210 980	1000 n/a	0	0	EQS (inland) dependent on hardness of receiving surface water environment
	Nitrite (NO ₂ ⁻ )			4	1	5	<5	9.8	9.08	9.8	n/a			
	Sulfate (SO ₄ ²⁻ )			4	4	45	56000	2370000	2070450	2370000	400000	1	1	
	pH (min.) (su)			4	4	0	7.2	7.5	7.5	7.5	6	0	0	
	pH (max.) (su)			4	4	0	7.2	7.5	7.5	7.5	9	0	0	
	Electrical conductivity (µS/cm) Anthracene	PH	Н	4	4	10 0.01	900 <0.01	1700 <0.01	1610 <0.01	1700 <0.01	n/a 0.1	0	0	
	Benzo(a)pyrene	PH	H	4	0	0.01	<0.01	<0.01	<0.01	<0.01	0.00017	4	0	Benzo(a)pyrene EQS used as marker substance for the group of benzo(a)pyrene benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene & indeno (1,2,3) cd)pyrene
206-44-0	Fluoranthene	Р	Н	4	0	0.01	<0.01	<0.01	<0.01	<0.01	0.0063	4	0	
91-20-3 GRP01	Naphthalene PAHs = sum of benzo(b)fluoranthene,	P <b>P</b>	NP <b>H</b>	4	0	0.01	<0.01	<0.01	<0.01	<0.01	2	0	0	
	benzo(k)fluoranthene, benzo(ghi)perylene, indeno(1,2,3- cd)pyrene			4	0	0.04	<0.04	<0.04	<0.04	<0.04	n/a			
		SP	NP	8	4	1	<1	6.4	5.385	6.4	7.7	0	0	
	Ali EC5-EC6			6	0	1	<1	<1	<1	<1	10	0	0	n-hexane fall within this fraction
	Ali >EC6-EC8 Ali >EC8-EC10			6	0	1	<1 <1	<1	<1 <1	<1 <1	10	0	0	n-heptane falls within this fraction n-octane and n-nonane fall within this fraction
	Ali >EC10-EC12			6	2	10	<10	230	196	230	10	2	2	11-octaile and 11-nonaile iail within this fraction
	Ali >EC12-EC16			6	2	10	<10	52	47.75	52	10	2	2	
P1938	Ali >EC16-EC35			6	0	10	<10	<10	<10	<10	10	0	0	
	Ali >EC35-EC44			6	0	10	<10	<10	<10	<10	10	0	0	
	Aro EC5-EC7 Aro >EC7-EC8			6	0	1	<1	<1	<1	<1	10 10	0	0	Benzene wholly representative of this fraction  Toluene wholly representative of this fraction
	Aro >EC8-EC10			6	0	1	<1	<1	<1	<1 <1	10	0	0	Ethylbenzene / xylene / trimethylbenzene representative of this range
	Aro >EC10-EC12			6	1	10	<10	82	64	82	10	1	1	Naphthalene often forms a reasonable percentage of this fraction
P1358	Aro > EC12-EC16			6	1	10	<10	34	28	34	10	1	1	2-methylnaphthalene, acenpthylene, acenapthene falls within this fraction
14050	Aro > EC16-EC21			6	0	10	<10	<10	<10	<10	10	0	0	fluorene, anthracene, phenanthrene, pyrene falls within this range Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylen
	Aro >EC21-EC35	i	and the same of th	6	0	10 10	<10 <10	<10	<10	<10	10	0	0	indeno(cd)pyrene fall within this fraction
P1360				_		. 771	<10	<10	<10	<10	10	- U	0	
P1360 P1362	Aro >EC35-EC44	P	Н	6	0	10		<i>2</i> 1	₂ 1	<i>-</i> 1	1 10		$\cap$	
P1360 P1362 71-43-2		P SP	H H	6 6 6	0 0	1 1	<1 <1	<1 <1	<1 <1	<1 <1	10 74	0	0	
P1360 P1362 71-43-2 108-88-3	Aro >EC35-EC44 Benzene	P SP	H H H	6	0 0	1 1	<1		<del></del>		74			
P1360 P1362 71-43-2 108-88-3 100-41-4	Aro >EC35-EC44  Benzene  Toluene  Ethylbenzene	P SP	H H	6 6	0 0 0	1 1	<1 <1 <1	<1 <1	<1	<1 <1	74 20	0	0	2001
P1360 P1362 71-43-2 108-88-3 100-41-4	Aro >EC35-EC44 Benzene Toluene	P SP	H H H	6	0 0 0	1 1 1	<1 <1	<1	<1	<1	74	0	0	Proposed EQS for Ethylbenzene in Water, R&D Technical Report P2-115/TR4. E 2001  EQS for total xylene  EQS for total xylene

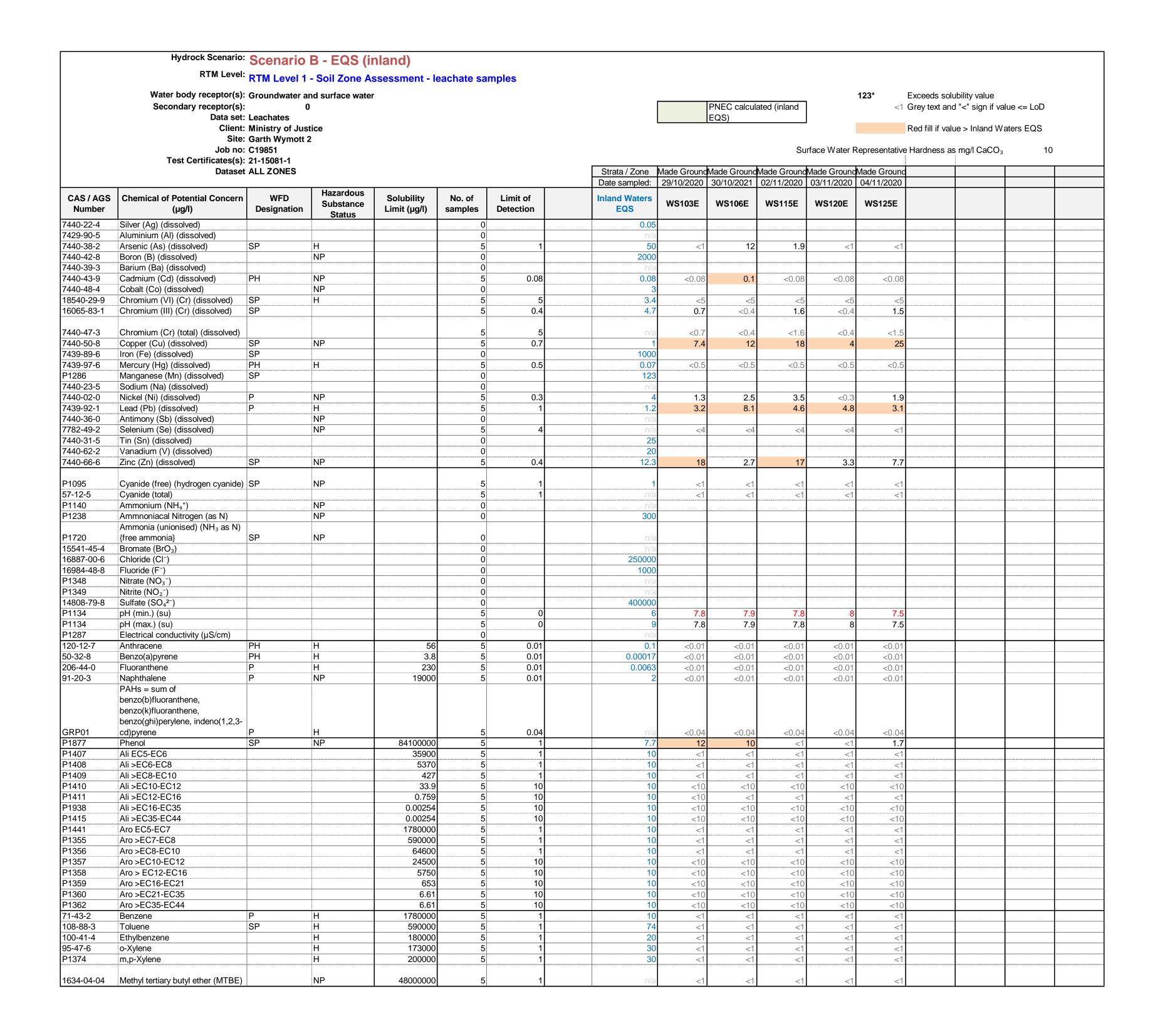


Hydrock Scenario: Scenario B - EQS (inland) RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples Water body receptor(s): Groundwater and surface water Exceeds solubility value <1 Grey text and "<" sign if value <= LoD Secondary receptor(s): PNEC calculated (inland Data set: Groundwater Red fill if value > Inland Waters EQS **Client: Ministry of Justice** Site: Garth Wymott 2 Surface Water Representative Hardness as mg/l CaCO₃ Job no: C19851 Test Certificates(s): 21-15081-1 Dataset ALL ZONES Strata / Zone | Deep G/W | Deep G/W | Deep G/W | Deep G/W | Shallow G/W Date sampled: 06/10/2021 06/10/2021 06/10/2021 06/10/2021 13/11/2020 13/11/2020 13/11/2020 13/11/2020 Hazardous CAS / AGS | Chemical of Potential Concern Limit of Solubility No. of **Inland Waters** BH107A WS112E BH106 BH101 BH108 WS109E WS119E WS123E Substance **EQS** Number Designation Limit (µg/l) samples Detection Status 7440-22-4 Silver (Ag) (dissolved) 0.05 7429-90-5 Aluminium (AI) (dissolved) 0.15 7440-38-2 0.99 Arsenic (As) (dissolved) 7440-42-8 Boron (B) (dissolved) 2000 280 270 Barium (Ba) (dissolved) 0.06 7440-39-3 100 210 200 0.02 7440-43-9 Cadmium (Cd) (dissolved) 0.05 0.03 NP 7440-48-4 Cobalt (Co) (dissolved) 18540-29-9 Chromium (VI) (Cr) (dissolved) 16065-83-1 Chromium (III) (Cr) (dissolved) 7440-47-3 Chromium (Cr) (total) (dissolved) 7440-50-8 Copper (Cu) (dissolved) NP 7439-89-6 Iron (Fe) (dissolved) 0.05 7439-97-6 Mercury (Hg) (dissolved) 0.05 1600 P1286 Manganese (Mn) (dissolved) 1300 1700 2200 0.34 250000 96000 120000 7440-23-5 Sodium (Na) (dissolved) 62000 7440-02-0 Nickel (Ni) (dissolved) Lead (Pb) (dissolved) 7439-92-1 7440-36-0 Antimony (Sb) (dissolved) NP 7782-49-2 Selenium (Se) (dissolved) 0.24 7440-31-5 Tin (Sn) (dissolved) 0.34 0.32 0.24 7440-62-2 Vanadium (V) (dissolved) Zinc (Zn) (dissolved) NP 4.1 Cyanide (free) (hydrogen cyanide) SP 57-12-5 Cyanide (total) 5100 P1140 Ammonium (NH₄⁺) 3800 13000 NP P1238 Ammnoniacal Nitrogen (as N) 130 3000 10000 4000 Ammonia (unionised) (NH₃ as N) P1720 {free ammonia} 3600 12000 4800 15541-45-4 Bromate (BrO₃) 16887-00-6 Chloride (CI⁻) 250000 35000 18000 29000 24000 16984-48-8 Fluoride (F⁻) 210 200 P1348 Nitrate (NO₃⁻ 830 620 P1349 Nitrite (NO₂-) 40000 14808-79-8 Sulfate (SO₄2-2370000 373000 56000 112000 P1134 pH (min.) (su) pH (max.) (su) 900 Electrical conductivity (µS/cm) 1700 930 1100 120-12-7 Anthracene 0.01 50-32-8 Benzo(a)pyrene 0.01 206-44-0 Fluoranthene 0.0063 < 0.01 < 0.0 91-20-3 Naphthalene 19000 0.01 < 0.01 < 0.01 < 0.01 < 0.01 PAHs = sum ofbenzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, indeno(1,2,3-Phenol NP 84100000 3.2 6.4 P1407 Ali EC5-EC6 35900 P1408 Ali >EC6-EC8 5370 Ali >EC8-EC10 P1410 Ali >EC10-EC12 230 * P1411 Ali >EC12-EC16 P1938 Ali >EC16-EC35 0.00254 P1415 Ali >EC35-EC44 0.00254 P1441 Aro EC5-EC7 1780000 P1355 Aro >EC7-EC8 590000 P1356 Aro >EC8-EC10 64600 P1357 Aro >EC10-EC12 24500 5750 P1358 Aro > EC12-EC16 P1359 Aro >EC16-EC21 P1360 Aro >EC21-EC35 P1362 Aro >EC35-EC44 71-43-2 Benzene 1780000 590000 108-88-3 Toluene 180000 100-41-4 Ethylbenzene 173000 95-47-6 o-Xylene P1374 200000 m,p-Xylene 48000000 1634-04-04 Methyl tertiary butyl ether (MTBE)

# **Summary of Remedial Targets Methodology Screening**



Hydrock Scenario: Scenario B - EQS (inland) 2013/39/EU Annex I **P**= priority substance RTM Level: RTM Level 1 - Soil Zone Assessment - leachate samples PH = priority hazardous substances.


WFD Designation (2015 Directions)

OP = Other substance identical to previous legislation Water body receptor(s): Groundwater and surface water Secondary receptor(s): Data set: Leachates PNEC calculated Client: Ministry of (inland EQS) SP = Specific Pollutant Justice Site: Garth Wymott 2 JAGDAG Hazardous Substances Determination (UK) Hazardous substance Job no: C19851 Non-hazardous pollutant Test Certificates(s): 21-15081-1 Dataset ALL ZONES (blank) Not included in assessment

CAS / AGS	Chemicals of Potential	WFD	Hazardous Substance		;	Summary of	Sample Data			Value Being Compared to Target =	Water C Tarç (Exceede	get	No. Samples Exceeding Water Quality Target	No. Samples above LoD Exceeding Water Quality	Notes
Number	Concern (concentrations in μg/l)	Designation	Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value		Inland Waters EQS	Inland Waters EQS	Inland Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
7440-38-2	, , , , , ,	_	Н	5	2	1	<1	12	9.98	12		50	0	0	
7440-43-9	Cadmium (Cd) (dissolved)	PH	NP												
				5	1	0.08	<0.08	0.1	0.096	0.1		0.08	1	1	EQS (inland) dependent on hardness of receiving surface water environment
18540-29-9	, , , , , , , , , , , , , , , , , , , ,	SP	Н	5	0	5	<5	<5	<5	<5		3.4	5	0	
16065-83-1	Chromium (III) (Cr) (dissolved)	SP		5	3	0.4	<0.4	1.6	1.58	1.6		4.7	0	0	
7440-47-3	Chromium (Cr) (total) (dissolved)			_		-	0.4	4.0	4.50	4.0		- / -			
7440.50.0		CD.	ND	5	0	5	0.4	1.6	1.58	1.6		n/a			Disconside to ECC (intend)
7440-50-8 7439-97-6	<u> </u>	SP	NP <b>H</b>	5 5	5	0.7	<0.5	25 <0.5	23.6 <0.5	25 <0.5		0.07	5 5	5	Bioavailable EQS (inland)
7440-02-0	Mercury (Hg) (dissolved) Nickel (Ni) (dissolved)	PH	NP	5	4	0.5	<0.3	3.5	3.3	3.5		0.07	0	0	Bioavailable EQS (inland)
7439-92-1	Lead (Pb) (dissolved)	P	H	5	5	1	3.1	8.1	7.44	8.1		1.2	5	5	Bioavailable EQS (inland)
7782-49-2	Selenium (Se) (dissolved)		NP	5	0	4	1	<4	<4	<4		n/a	3		Dioavallable EQO (Illiand)
		SP	NP	5	5	0.4	2.7	18	17.8	18		12.3	2	2	Bioavailable EQS (inland) + ambient background concentration (ABC)
P1095		SP	NP		9	V. <del>T</del>	<b>-</b>	10	17.0			12.0			Sississio 200 (mana) - ambient baorigiouna concentration (700)
	cyanide)	J .		5	0	1	<1	<1	<1	<1		1	0	0	
57-12-5	Cyanide (total)			5	0	<u>.</u> 1	<1	<1	<1	<1		n/a			
P1134	pH (min.) (su)			5	5	0	7.5	8	7.98	8		6	0	0	
P1134	pH (max.) (su)			5	5	0	7.5	8	7.98	8		9	0	0	
120-12-7		PH	Н	5	0	0.01	< 0.01	< 0.01	< 0.01	< 0.01		0.1	0	0	
50-32-8	Benzo(a)pyrene	PH	H	5	0	0.01	<0.01	<0.01	<0.01	<0.01		0.00017	5	0	Benzo(a)pyrene EQS used as marker substance for the group of benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene & indeno (1,2,3-cd)pyrene
206-44-0	Fluoranthene	P	Н	5	0	0.01	<0.01	<0.01	<0.01	<0.01		0.0063	5	0	
91-20-3	Naphthalene	P	NP	5	0	0.01	<0.01	<0.01	<0.01	<0.01		2	0	0	
GRP01	PAHs = sum of benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, indeno(1,2,3- cd)pyrene	P	H	5	0	0.04	<0.04	<0.04	<0.04	<0.04		n/a			
P1877	Phenol	SP	NP	5	3	1	<1	12	11.6	12	9	7.7	2	2	
P1407	Ali EC5-EC6			5	0	1	<1	<1	<1	<1		10	0	0	n-hexane fall within this fraction
P1408	Ali >EC6-EC8			5	0	1	<1	<1	<1	<1		10	0	0	n-heptane falls within this fraction
P1409	Ali >EC8-EC10			5	0	1	<1	<1	<1	<1		10	0	0	n-octane and n-nonane fall within this fraction
P1410	Ali >EC10-EC12			5	0	10	<10	<10	<10	<10		10	0	0	
P1411	Ali >EC12-EC16			5	0	10	1	<10	8.2	<10		10	0	0	
P1938	Ali >EC16-EC35			5	0	10	<10	<10	<10	<10		10	0	0	
P1415	Ali >EC35-EC44			5	0	10	<10	<10	<10	<10		10	0	0	
P1441	Aro EC5-EC7			5	0	1	<1	<1	<1	<1	***************************************	10	0	0	Benzene wholly representative of this fraction
P1355	Aro >EC7-EC8			5	0	1	<1	<1	<1	<1	8 8 8 8	10	0	0	Toluene wholly representative of this fraction
P1356	Aro > EC8-EC10			5	0	1	<1	<1	<1	<1		10	0	0	Ethylbenzene / xylene / trimethylbenzene representative of this range
P1357	Aro > EC10-EC12			5	0	10	<10 <10	<10	<10	<10		10	0	0	Naphthalene often forms a reasonable percentage of this fraction
P1358 P1359	Aro > EC12-EC16 Aro > EC16-EC21			5 5	0	10 10	<10	<10 <10	<10 <10	<10 <10		10	0	0	2-methylnaphthalene, acenpthylene, acenapthene falls within this fraction fluorene, anthracene, phenanthrene, pyrene falls within this range
P1360	Aro >EC21-EC35			5	0	10	<10	<10	<10	<10		10	0	0	Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, indeno(cd)pyrene fall within this fraction
P1362	Aro >EC35-EC44			5	0	10	<10	<10	<10	<10		10	0	0	252(3)por Jiorio, iliaorio(54)pjiorio iali maliir alio ilaotiori
71-43-2	Benzene	Р	Н	5	0	1	<1	<1	<1	<1		10	0	0	
108-88-3	Toluene	SP	Н	5	0	1	<1	<1	<1	<1		74	0	0	
100-41-4	Ethylbenzene		Н	5	0	1	<1	<1	<1	<1		20	0		Proposed EQS for Ethylbenzene in Water, R&D Technical Report P2-115/TR4. EA 2001
95-47-6	o-Xylene		Н	5	0	1	<1	<1	<1	<1		30	0	0	EQS for total xylene
P1374	m,p-Xylene		Н	5	0	1	<1	<1	<1	<1		30	0	0	EQS for total xylene
1634-04-04	Methyl tertiary butyl ether (MTBE)		NP	5	0	1	<1	<1	<1	<1		n/a			

C19851 RTM L1+L2 (Ver 32)1- Leachates., Summary







# Appendix F Waste Assessment



## HazWasteOnline™ Assessment





## Waste Classification Report

HazWasteOnline[™] classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)





TYWGY-GY7EZ-IP3Y

#### Job name

#### Garth Wymott 2

#### **Description/Comments**

Lab Reports: 21-95239, 21-95639, 21-95906

Project

C-19851 Garth Wymott 2

Classified by

Name: Company:

Will Swinnerton Hydrock Consultants Ltd

Date: 4 Lakeside, Festival Park, Stoke-on-Trent.

Date. 4 Lancistic, 1 estival 1 air, Store-off-fit

18 Oct 2021 10:45 GMT ST1 5RY

Telephone: (01782) 261919

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

CERTIFIED

Course

Site

Hazardous Waste Classification

**Date** 08 Sep 2020

Next 3 year Refresher due by Sep 2023

#### Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	BH107A-1-26082021-0.40		Non Hazardous		3
2	CT21-1-27082021-0.25		Non Hazardous		5
3	CT22-2-27082021-0.25		Non Hazardous		8
4	CT23-3-27082021-0.10		Non Hazardous		10
5	SA105-1-27082021-0.30		Non Hazardous		12
6	SA101-1-27082021-0.30		Non Hazardous		13
7	BH10423082021-17.00		Non Hazardous		15
8	BH10224082021-7.50		Non Hazardous		16
9	WS104-1-24082021-0.50		Non Hazardous		17
10	SA104-1-24082021-0.20		Non Hazardous		19
11	CBR118-1-24082021-0.10		Non Hazardous		21
12	WS105-1-24082021-0.30		Non Hazardous		23
13	CBR115-1-24082021-		Non Hazardous		25
14	WS105-9-24082021-		Non Hazardous		27
15	CBR105A-1-25082021-0.60		Non Hazardous		28
16	CBR113-1-25082021-0.30		Non Hazardous		30
17	CBR109-1-25082021-0.30		Non Hazardous		32
18	CBR101-1-25082021-0.40		Non Hazardous		34
19	CBR111-1-25082021-0.20		Non Hazardous		36
20	CBR124-1-25082021-0.20		Non Hazardous		38
21	WS107-1-25082021-0.30		Non Hazardous		40
22	WS103-1-25082021-0.20		Non Hazardous		43
23	WS103-4-25082021-1.00		Non Hazardous		46
24	BH104-1-20082021-0.50		Non Hazardous		48

#### Related documents

# Name	Description
1 21-95239_HWOL_Results.	.hwol file used to create the Job
2 21-95639_HWOL_Results.	wol .hwol file used to create the Job





# Name	Description
3 21-95906_HWOL_Results.hwol	.hwol file used to create the Job
Hydrock Standard plus Cresol (ammended Lead)	waste stream template used to create this Job
Report	
Created by: Will Swinnerton	Created date: 18 Oct 2021 10:45 GMT
^nnondiaca	Dogo

AppendicesPageAppendix A: Classifier defined and non CLP determinands49Appendix B: Rationale for selection of metal species50Appendix C: Version51

Page 2 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





Classification of sample: BH107A-1-26082021-0.40

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:

BH107A-1-26082021-0.40 Chapter:

from contaminated sites) Moisture content:

Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 12% (wet weight correction)

03)

#### **Hazard properties**

None identified

#### **Determinands**

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#			rminand Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound cor	nc.	Classification value	MC Applied	Conc. Not Used
1	9	acenaphthene				<0.05	mg/kg		<0.05 n	ng/kg	<0.000005 %	_	<lod< th=""></lod<>
Ŀ		201-469	)-6	83-32-9					40.00	ng/ng			100
2	0	acenaphthylene				<0.05	mg/kg		<0.05 n	na/ka	<0.000005 %		<lod< td=""></lod<>
Ĺ		205-917	'-1	208-96-8						9,9			
3	0	anthracene				<0.05	mg/kg		<0.05 n	na/ka	<0.000005 %		<lod< td=""></lod<>
Ľ		204-371	-1	120-12-7		10.00			10.00	9,9			
4	a C	arsenic { <mark>arsenic trioxide</mark> }				14	mg/kg	1.32	16.266 n	ng/kg	0.00163 %	<b>√</b>	
		033-003-00-0 215-481	-4	1327-53-3						9,9		*	
5		benzo[a]anthracene				0.53	mg/kg		0.466 n	ng/kg	0.0000466 %	1	
Ľ		601-033-00-9 200-280	)-6	56-55-3						9,9		*	
6		benzo[a]pyrene; benzo[def]				0.42	mg/kg		0.37 n	ng/kg	0.000037 %	<b>√</b>	
		601-032-00-3 200-028	3-5	50-32-8						0 0		Ľ	
7		benzo[b]fluoranthene				0.36	mg/kg		0.317 n	ng/kg	0.0000317 %	1	
		601-034-00-4 205-911	-9	205-99-2						-			
8	0	benzo[ghi]perylene				0.29	mg/kg		0.255 n	ng/kg	0.0000255 %	1	
		205-883	3-8	191-24-2								Ľ	
9		benzo[k]fluoranthene				0.29	mg/kg		0.255 n	ng/kg	0.0000255 %	1	
		601-036-00-5 205-916		207-08-9								Ľ	
10	ď,	beryllium { beryllium oxide }				1.3	mg/kg	2.775	3.175 n	ng/kg	0.000317 %	1	
		004-003-00-8 215-133	3-1	1304-56-9								Ľ	
11	<b>4</b>	boron {  boron tribromide/(combined) }		rifluoride 10294-33-4, 10294-34-5,	-	0.7	mg/kg	13.43	8.273 n	ng/kg	0.000827 %	✓	
				7637-07-2									
12	4	cadmium { cadmium sulfide	}		1	<0.2	ma/ka	1.285	<0.257 n	na/ka	<0.00002 %		<lod< td=""></lod<>
		048-010-00-4 215-147	'-8	1306-23-6						3 3			
13	4	chromium in chromium(III) o oxide (worst case) }	•			33	mg/kg	1.462	42.444 n	ng/kg	0.00424 %	✓	
	-	215-160		1308-38-9								$\vdash$	
14	4	chromium in chromium(VI) oxide }		{ chromium(VI)	-	<1.2	mg/kg	1.923	<2.308 n	ng/kg	<0.000231 %		<lod< td=""></lod<>
<u> </u>		24-001-00-0 215-607-8 1333-82-0 hrysene			$\vdash$	0.33							
15			•				mg/kg		0.29 n	ng/kg	0.000029 %	✓	
16	æ		pper (I) oxid			77	mg/kg	1.126	76.29 n	ng/kg	0.00763 %	✓	



#		CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
17	<b>4</b>	cyanides { salts exception of completerricyanides and managements.	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5 dibenz[a,h]anthrace											
18			200-181-8	53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluoranthene	200-101-0	p3-10-3					<u> </u>				
19			205-912-4	206-44-0	1	0.87	mg/kg		0.766	mg/kg	0.0000766 %	✓	
	0	fluorene			T	0.05			0.05		0.000005.0/		1.00
20			201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21	0	indeno[123-cd]pyre	ne	1		0.25	mg/kg		0.22	mg/kg	0.000022 %	,	
21			205-893-2	193-39-5		0.23	ilig/kg		0.22	ilig/kg	0.000022 /8	<b>√</b>	
22	4	lead {		ception of those	1	87	mg/kg		76.56	mg/kg	0.00766 %	✓	
	-	082-001-00-6			-							-	
23	-	mercury { mercury				<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
			231-299-8	7487-94-7	$\vdash$								
24		naphthalene 601-052-00-2	nalene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	-	nickel { nickel dihyd		91-20-3	H				<u> </u>				
25	-	028-008-00-X	235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		34	mg/kg	1.579	47.259	mg/kg	0.00473 %	✓	
26	0	рН		PH		8	рН		8	рН	8рН		
27	0	phenanthrene				0.44	mg/kg		0.387	mg/kg	0.0000387 %	<b>✓</b>	
			201-581-5	85-01-8		0.44	ilig/kg		0.507	ilig/kg	0.0000307 78	~	
28	0	pyrene				0.84	mg/kg		0.739	mg/kg	0.0000739 %	<b>V</b>	
_			204-927-3	129-00-0						55		ľ	
29	4	selenium { selenium cadmium sulphosel in this Annex }				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
	-	034-002-00-8											
30		zinc { zinc oxide }				92	mg/ka	1.245	100.772	mg/kg	0.0101 %	1	
			215-222-5	1314-13-2	1		J. 19			3 3		1.	
31	0	monohydric phenol	nohydric phenols P1186			<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
	ھے	ranadium {			$\vdash$								
32	4		215-239-8	1314-62-1	1	41	mg/kg	1.785	64.409	mg/kg	0.00644 %	✓	
М			<del>-</del>	1	1			1		Total:	0.0447 %		

#### Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration a**g** 

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 4 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





Classification of sample: CT21-1-27082021-0.25

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:

CT21-1-27082021-0.25 Chapter:

from contaminated sites) Moisture content: Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 19%

03) (wet weight correction)

#### **Hazard properties**

None identified

#### **Determinands**

Moisture content: 19% Wet Weight Moisture Correction applied (MC)

#		Determinand  CLP index number	CLP Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
<u> </u>	8	acenaphthene					0.05		2	
1		201-469-6 83-32-9	-	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
	8	acenaphthylene		0.05			0.05	0.000005.0/		
2		205-917-1 208-96-8	_	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
	8	anthracene		0.05			0.05	0.000005.0/		1.00
3		204-371-1 120-12-7		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
4	4	arsenic { arsenic trioxide }		11	malka	1 22	11.764 mg/kg	0.00118 %	,	
4	_	033-003-00-0 215-481-4   1327-53-3		'''	mg/kg	1.32	11.764 mg/kg	0.00116 %	✓	
5		benzene		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
Ľ		601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001 Hig/kg	<0.0000001 78		LOD
6		benzo[a]anthracene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
Ľ		601-033-00-9 200-280-6 56-55-3		10.00				40.000000 70		1202
7		benzo[a]pyrene; benzo[def]chrysene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
_		601-032-00-3 200-028-5 50-32-8								
8		benzo[b]fluoranthene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4 205-911-9 205-99-2								
9	Θ	benzo[ghi]perylene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-883-8   191-24-2								
10		benzo[k]fluoranthene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-036-00-5 205-916-6 207-08-9							_	
11	4	beryllium { beryllium oxide }		0.97	mg/kg	2.775	2.181 mg/kg	0.000218 %	✓	
		004-003-00-8 215-133-1 1304-56-9	-						-	
12	4	boron { boron tribromide/trichloride/trifluoride (combined) }		0.7	ma/ka	13.43	7.615 mg/kg	0.000761 %	,	
12		10294-33-4, 10294-34-5, 7637-07-2		0.7	mg/kg	10.40	7.015 Hig/kg	0.000761 78	<b>√</b>	
13	<b>2</b>		1	.0.0	m m/l	1 205	-0.0E7//	-0.00003.8/		1.00
13		048-010-00-4 215-147-8  1306-23-6	_ 1	<0.2	mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
14	*	chromium in chromium(III) compounds { a chromium(III) oxide (worst case) }		34	mg/kg	1.462	40.251 mg/kg	0.00403 %	✓	
		215-160-9   1308-38-9	1							
15		chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.2	mg/kg	1.923	<2.308 mg/kg	<0.000231 %		<lod< td=""></lod<>
<u></u>		024-001-00-0 215-607-8  1333-82-0	+							
16		chrysene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-048-00-0 205-923-4 218-01-9								



#			Determinand		CLP Note	User entered	d data	Conv.	Compound c	onc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	LP.			i actor			value	MC A	Oseu
17	æ	copper { dicopper c	oxide; copper (I) oxide; copper (I) oxide;	de }	Ĭ	23	mg/kg	1.126	20.975	mg/kg	0.0021 %	✓	
18	4	cyanides { salts exception of completerricyanides and magnetised elsewhere 006-007-00-5	ex cyanides such as nercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
19		dibenz[a,h]anthrace	ene 200-181-8	53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20	0	ethylbenzene	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
21	0	fluoranthene	205-912-4	206-44-0	T	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
22	0	fluorene	201-695-5	86-73-7	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23	0	indeno[123-cd]pyre		193-39-5		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
24	<b>4</b>	lead { lead compospecified elsewhere	oounds with the exc		1	28	mg/kg		22.68	mg/kg	0.00227 %	<b>✓</b>	
25	~	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		0.6	mg/kg	1.353	0.658	mg/kg	0.0000658 %	✓	
26		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
27			lroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		28	mg/kg	1.579	35.823	mg/kg	0.00358 %	<b>√</b>	
28	0	pH		PH		7.8	рН		7.8	рН	7.8 pH		
29	0	phenanthrene	201-581-5	85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
30	0	pyrene	204-927-3	129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
31	<b>4</b>	selenium { seleniur cadmium sulphose in this Annex }	n compounds with t lenide and those sp			<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
32		toluene 601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
33	0	TPH (C6 to C40) pe		ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
34			TPH				mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
35		zinc { zinc oxide }	30-013-00-7 215-222-5 1314-13-2				mg/kg	1.245	67.551	mg/kg	0.00676 %	✓	
36	0		monohydric phenols				mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
37	4	•					mg/kg	1.785	50.61	mg/kg	0.00506 %	<b>√</b>	
38		tert-butyl methyl etl 2-methoxy-2-methy	butyl methyl ether; MTBE; ethoxy-2-methylpropane			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		000-101-00 <b>-</b> A	E 10-000-1	1007-07-4						Total:	0.0278 %		

Page 6 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification





Classification of sample: CT22-2-27082021-0.25

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

LoW Code: Sample name:

CT22-2-27082021-0.25 Chapter: Moisture content:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry: 13% (wet weight correction)

03)

#### **Hazard properties**

None identified

#### **Determinands**

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
1	9	acenaphthene	201.100.0			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
_			201-469-6	83-32-9									
2	0	acenaphthylene	005 047 4	haa aa a		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-917-1	208-96-8									
3	0	anthracene	204-371-1	400 40 7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
_	_	arsenic { arsenic tri		120-12-7									
4	4	,	215-481-4	1327-53-3		12	mg/kg	1.32	13.784	mg/kg	0.00138 %	✓	
		benzo[a]anthracene		1321-33-3									
5				56-55-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[a]pyrene; be		po-33-3									
6				50-32-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[b]fluoranther		p0-32-0									
7			205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[ghi]perylene		F-00 00 E									
8			205-883-8	191-24-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[k]fluoranther		1 -									
9				207-08-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10	æ	beryllium { berylliur	n oxide }	1		4.4	//	0.775	0.050	//	0.000000.0/	1	
10	_	004-003-00-8	215-133-1	1304-56-9		1.1	mg/kg	2.775	2.656	mg/kg	0.000266 %	✓	
11	4	boron { boron tril (combined) }	bromide/trichloride/t	trifluoride 10294-33-4, 10294-34-5, 7637-07-2		0.4	mg/kg	13.43	4.674	mg/kg	0.000467 %	<b>✓</b>	
12	æ	cadmium { cadmiur	<mark>n sulfide</mark> }		1	<0.2	ma/ka	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
12		048-010-00-4	215-147-8	1306-23-6	Ľ	<0.2	ilig/kg	1.203	<0.257	ilig/kg	<0.00002 /6		\LOD
13	4	chromium in chrom oxide (worst case)	}	chromium(III)		35	mg/kg	1.462	44.504	mg/kg	0.00445 %	<b>√</b>	
14		chromium in chromoxide }	ium(VI) compounds	s { chromium(VI)		<1.2	mg/kg	1.923	<2.308	mg/kg	<0.000231 %		<lod< td=""></lod<>
_			215-607-8	1333-82-0	$\vdash$								
15		chrysene	005 000 4	040.04.0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
_	+		205-923-4	218-01-9									
16	4	copper { dicopper c 029-002-00-X		ae }  1317-39-1	-	23	mg/kg	1.126	22.529	mg/kg	0.00225 %	✓	
	<u> </u>	023-002-00-7	Z1J-Z1U-1	1011-05-1									





#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound co	nc.	Classification value	MC Applied	Conc. Not Used
17		cyanides { salts of exception of complete ferricyanides and managed in specified elsewhere the control of the c	ex cyanides such as nercuric oxycyanide	ferrocyanides,	·	<1	mg/kg	1.884	<1.884 r	ng/kg	<0.000188 %		<lod< th=""></lod<>
18		dibenz[a,h]anthrace	ene 200-181-8	53-70-3		<0.05	mg/kg		<0.05 r	ng/kg	<0.000005 %		<lod< th=""></lod<>
19	0	fluoranthene	205-912-4	206-44-0		<0.05	mg/kg		<0.05 r	ng/kg	<0.000005 %		<lod< td=""></lod<>
20	0	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05 r	ng/kg	<0.000005 %		<lod< td=""></lod<>
21	0	indeno[123-cd]pyre	ne 205-893-2	193-39-5		<0.05	mg/kg		<0.05 r	ng/kg	<0.000005 %		<lod< td=""></lod<>
22	4	lead { • lead comp specified elsewhere 082-001-00-6		eption of those	1	18	mg/kg		15.66 r	ng/kg	0.00157 %	✓	
23	4	mercury { mercury	dichloride }	7487-94-7		0.6	mg/kg	1.353	0.707 r	ng/kg	0.0000707 %	✓	
24		naphthalene	202-049-5	91-20-3		<0.05	mg/kg		<0.05 r	ng/kg	<0.000005 %		<lod< td=""></lod<>
25	-	028-008-00-X	roxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		35	mg/kg	1.579	48.096 r	mg/kg	0.00481 %	<b>√</b>	
26	0	pH		PH		8.5	рН		8.5 p	ЭΗ	8.5 pH		
27	0	phenanthrene	201-581-5	85-01-8		<0.05	mg/kg		<0.05 r	ng/kg	<0.000005 %		<lod< td=""></lod<>
28	0	pyrene	204-927-3	129-00-0		<0.05	mg/kg		<0.05 r	ng/kg	<0.000005 %		<lod< td=""></lod<>
29	<b>₽</b>	selenium { selenium cadmium sulphosel in this Annex }				<1	mg/kg	1.405	<1.405 r	ng/kg	<0.000141 %		<lod< th=""></lod<>
		034-002-00-8 zinc { zinc oxide }			L								
30	-	,	215-222-5	1314-13-2		67	mg/kg	1.245	72.554 r	ng/kg	0.00726 %	✓	
31	0	monohydric phenol	s	P1186		<1	mg/kg		<1 r	ng/kg	<0.0001 %		<lod< td=""></lod<>
32	4	vanadium { divanad	<mark>lium pentaoxide; va</mark> 215-239-8	nadium pentoxide }		36	mg/kg	1.785	55.912 r	ng/kg	0.00559 %	✓	
		50. 50 5		1 02 .						Total:	0.0289 %	Н	

#### Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification



Classification of sample: CT23-3-27082021-0.10

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

LoW Code: Sample name:

CT23-3-27082021-0.10 Chapter: Moisture content:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry: 24% (wet weight correction)

03)

#### **Hazard properties**

None identified

#### **Determinands**

Moisture content: 24% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound o	onc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene	004 400 0	ho oo o	Ĭ	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	_	<lod< td=""></lod<>
			201-469-6	83-32-9	$\vdash$								
2	0	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
_		anthracene	205-917-1	208-90-8	$\vdash$							Н	
3	0		204-371-1	120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
_	_	arsenic { arsenic tri		120-12-7	$\vdash$							Н	
4	4		•	1327-53-3		15	mg/kg	1.32	15.052	mg/kg	0.00151 %	✓	
		benzo[a]anthracene		1321-33-3									
5				56-55-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[a]pyrene; be		po-55-5	H								
6				50-32-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[b]fluoranther		p0-32-0									
7				205-99-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[ghi]perylene		200 33 2									
8	0			191-24-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[k]fluoranther		101212									
9				207-08-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	-			201 00 0									
10	_			1304-56-9	-	1	mg/kg	2.775	2.109	mg/kg	0.000211 %	✓	
11	<b>₫</b>	boron { boron tril (combined) }	bromide/trichloride/t	trifluoride 10294-33-4, 10294-34-5, 7637-07-2		1.4	mg/kg	13.43	14.29	mg/kg	0.00143 %	<b>√</b>	
12	4	cadmium { cadmiur	<mark>m sulfide</mark> }		1	0.8	ma/ka	1.285	0.781	mg/kg	0.0000608 %	1	
		048-010-00-4	215-147-8	1306-23-6	Ĺ					99		ľ	
13	4	chromium in chrom oxide (worst case)	} `´´			32	mg/kg	1.462	35.545	mg/kg	0.00355 %	✓	
_	-			1308-38-9	-								
14		chromium in chrom oxide } 024-001-00-0	. , , .	1333-82-0		<1.2	mg/kg	1.923	<2.308	mg/kg	<0.000231 %		<lod< td=""></lod<>
-	Н	chrysene	215-607-8	1333-02-0	H								
15		•	205-923-4	218-01-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
16	4	copper { dicopper o	oxide; copper (I) oxid		_	41	mg/kg	1.126	35.083	mg/kg	0.00351 %	<b>√</b>	





_					Т							$\overline{}$	
#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
17	₫.	cyanides { salts of exception of complete ferricyanides and management of specified elsewhere on the control of the control of the control of the cyanides and management of the cyanides of the control of the cyanides of th	ex cyanides such as ercuric oxycyanide	e with the s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %	2	<lod< td=""></lod<>
18		dibenz[a,h]anthrace	ene 200-181-8	53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	П	<lod< td=""></lod<>
19	0	fluoranthene	205-912-4	206-44-0		0.34	mg/kg		0.258	mg/kg	0.0000258 %	✓	
20	0	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21	0	indeno[123-cd]pyre	ne 205-893-2	193-39-5		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
22	4	lead { lead compospecified elsewhere		eption of those	1	61	mg/kg		46.36	mg/kg	0.00464 %	✓	
23	4	mercury { mercury (	dichloride }	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %	П	<lod< td=""></lod<>
24		naphthalene	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	П	<lod< td=""></lod<>
25	_		roxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		31	mg/kg	1.579	37.213	mg/kg	0.00372 %	✓	
26	0	pH		PH		8	рН		8	рН	8pH	П	
27	0	phenanthrene	201-581-5	85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	П	<lod< td=""></lod<>
28	0	pyrene	204-927-3	129-00-0		0.35	mg/kg		0.266	mg/kg	0.0000266 %	✓	
29	*	selenium { selenium cadmium sulphosel in this Annex }				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
30	4	zinc { zinc oxide }	215-222-5	1314-13-2		140	mg/kg	1.245	132.438	mg/kg	0.0132 %	<b>√</b>	
31	0	monohydric phenols		P1186		<1	mg/kg		<1	mg/kg	<0.0001 %	Н	<lod< td=""></lod<>
32	4	vanadium { divanad 023-001-00-8	lium pentaoxide; va 215-239-8			35	mg/kg	1.785	47.486	mg/kg	0.00475 %	<b>√</b>	
		025-001-00-0 k	£ 10-203-0	1014-02-1						Total:	0.0374 %	Н	

#### Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification





Classification of sample: SA105-1-27082021-0.30

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:

SA105-1-27082021-0.30 Chapter:

from contaminated sites) Moisture content: 17 05 04 (Soil and stones other than those mentioned in 17 05 9.8% Entry: 03)

(wet weight correction)

#### **Hazard properties**

None identified

#### **Determinands**

Moisture content: 9.8% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
1		benzene 601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
2		ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
3		toluene 601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
4	0	TPH (C6 to C40) pe	021-00-3				mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
5			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< th=""></lod<>
6		2-methoxy-2-methy	ert-butyl methyl ether; MTBE; -methoxy-2-methylpropane				mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
										Total:	0.001 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

<LOD Below limit of detection

ND Not detected

Page 12 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





Classification of sample: SA101-1-27082021-0.30

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:

SA101-1-27082021-0.30 Chapter:

from contaminated sites) Moisture content:

Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 17% (wet weight correction)

03)

#### **Hazard properties**

None identified

#### **Determinands**

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound (	conc.	Classification value	MC Applied	Conc. Not Used
1	9	acenaphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
			01-469-6	83-32-9									
2	0	acenaphthylene			_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			05-917-1	208-96-8									
3	0	anthracene	04-371-1	120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	_	arsenic { arsenic trio		120-12-7									
4	4	•	,	1327-53-3		26	mg/kg	1.32	28.493	mg/kg	0.00285 %	✓	
		benzo[a]anthracene		1027 00 0									
5				56-55-3		0.55	mg/kg		0.457	mg/kg	0.0000457 %	✓	
		benzo[a]pyrene; ben	nzo[def]chrysene			0.00			0.004		0.0000004.0/	,	
6		601-032-00-3 2	00-028-5	50-32-8		0.39	mg/kg		0.324	mg/kg	0.0000324 %	✓	
7		benzo[b]fluoranthene	e			0.38	mg/kg		0.315	mg/kg	0.0000315 %	/	
,		601-034-00-4 2	05-911-9	205-99-2		0.50			0.010	mg/kg	0.0000010 70	~	
8	0	benzo[ghi]perylene				0.25	mg/kg		0.208	mg/kg	0.0000208 %	<b>√</b>	
				191-24-2						3 3		Ľ	
9		benzo[k]fluoranthene				0.26	mg/kg		0.216	mg/kg	0.0000216 %	1	
	_			207-08-9									
10	4	beryllium { beryllium 004-003-00-8	•	1304-56-9	_	1.4	mg/kg	2.775	3.225	mg/kg	0.000322 %	✓	
11	₫,	boron { boron trib (combined) }	romide/trichloride/t		-	<0.2	mg/kg	13.43	<2.686	mg/kg	<0.000269 %		<lod< th=""></lod<>
12	æ\$	cadmium { cadmium	sulfide }		1	<0.2	ma/ka	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
		048-010-00-4 2	15-147-8	1306-23-6	Ľ			200		9/9			
13	<b>4</b>	chromium in chromiu oxide (worst case) }	. , .	{ • chromium(III)		29	mg/kg	1.462	35.18	mg/kg	0.00352 %	✓	
14	æ	chromium in chromiuoxide }	um(VI) compounds			<1.2	mg/kg	1.923	<2.308	mg/kg	<0.000231 %		<lod< td=""></lod<>
<b>H</b>		chrysene	.10 007 0	1000 02 0	$\vdash$							Н	
15			05-923-4	218-01-9		0.43	mg/kg		0.357	mg/kg	0.0000357 %	✓	
16		copper { dicopper ox	kide; copper (I) oxid	<mark>de</mark> }		49	mg/kg	1.126	45.79	mg/kg	0.00458 %	<b>√</b>	
		029-002-00-X 2	15-270-7	1317-39-1								$\perp$	



Table   Second   Se	#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound o	onc.	Classification value	MC Applied	Conc. Not Used
18	17		exception of complete ferricyanides and management of specified elsewhere	ex cyanides such a nercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
18														
19	18				53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
19				200-101-0	p3-70-3									
Part	19			205-912-4	206-44-0		0.78	mg/kg		0.647	mg/kg	0.0000647 %	✓	
		0					0.05			0.05		0.000005.0/		1.00
20	20			201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
22   lead {   lead compounds with the exception of those specified elsewhere in this Annex }   1	21	0	indeno[123-cd]pyre	ne			0.22	ma/ka		0.193	ma/ka	0.0000183.9/	,	
22				205-893-2	193-39-5		0.22	ilig/kg		0.183	ilig/kg	0.0000183 /8	~	
Marcury (mercury dichloride   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786   100,0000786	22	_	specified elsewhere		eption of those	1	46	mg/kg		38.18	mg/kg	0.00382 %	✓	
23	<u> </u>					_								
Part	23	_					0.7	mg/kg	1.353	0.786	mg/kg	0.0000786 %	✓	
County   C	_			010-00-X 231-299-8 7487-94-7										
The color of the color of the color of the color of this Annex   The	24		•	nthalene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
25					91-20-3									
Phase   Phas	25	_	028-008-00-X	235-008-5 [1]			33	mg/kg	1.579	43.262	mg/kg	0.00433 %	✓	
201-581-5     35-01-8     0.33   mg/kg   0.274   mg/kg   0.0000274 %   7	26	0	pH		PH		7.3	рН		7.3	рН	7.3 pH		
201-581-5   35-01-8	27	0	phenanthrene				0.33	ma/ka		0.274	ma/ka	0.0000274 %	,	
204-927-3   129-00-0     0.79   mg/kg   0.656   mg/kg   0.000656 %				201-581-5	85-01-8		0.55			0.274	mg/kg	0.0000214 /6	~	
29   Selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }	28	0	pyrene				0.79	ma/ka		0.656	ma/ka	0.0000656 %	1	
29											99		ľ	
30 2 zinc { zinc oxide }	29	4	cadmium sulphosel				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
31 monohydric phenols  215-222-5   1314-13-2		-												
303-013-00-7   215-222-5   1314-13-2	30						84	mg/kg	1.245	86.781	mg/kg	0.00868 %	<b>/</b>	
31 P1186					1314-13-2						0 0			
32 vanadium { divanadium pentaoxide; vanadium pentoxide }	31	•	monohydric phenol	•			<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
32 023-001-00-8 215-239-8 1314-62-1 40 mg/kg 1.785 59.268 mg/kg 0.00593 %	$\vdash$	-				$\vdash$								
	32	_				-	40	mg/kg	1.785	59.268	mg/kg	0.00593 %	✓	
			020 001 00 0	210 200 0	1017021						Total:	0.0354 %		

#### Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration a**g** 

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 14 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





Classification of sample: BH104--23082021-17.00

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:

BH104--23082021-17.00 Chapter:

from contaminated sites) Moisture content:

17 05 04 (Soil and stones other than those mentioned in 17 05 21% Entry: (wet weight correction)

03)

#### **Hazard properties**

None identified

#### **Determinands**

Moisture content: 21% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	9	pH		PH		8.1	рН		8.1	рН	8.1 pH		
2		diphosphide }	nesium {			51	mg/kg	1.85	74.519	mg/kg	0.00745 %	✓	
	1		1							Total:	0.00745 %		

### Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound all a concentration





Classification of sample: BH102--24082021-7.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:

BH102--24082021-7.50 Chapter: Moisture content:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry: (wet weight correction)

03)

#### **Hazard properties**

None identified

#### **Determinands**

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH	PH				рН		8.5	рН	8.5 pH		
2		magnesium { magnesium phosphide; trimagnesium   magnesium phosphide   magnesium phosphide   magnesium   magnesium phosphide   12057-74-8				29	mg/kg	1.85	47.201	mg/kg	0.00472 %	✓	
									'	Total:	0.00472 %		

#### Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound e\$ concentration

Page 16 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





Classification of sample: WS104-1-24082021-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

from contaminated sites)

#### Sample details

Sample name: LoW Code:

WS104-1-24082021-0.50 Chapter:

Moisture content:

18%

Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 03) (wet weight correction)

#### **Hazard properties**

None identified

#### **Determinands**

Moisture content: 18% Wet Weight Moisture Correction applied (MC)

#		Determinand  CLP index number		User entered data		Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used		
1	0	acenaphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
			201-469-6	83-32-9									
2	0	acenaphthylene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-917-1	208-96-8									
3	0	anthracene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			204-371-1	120-12-7									
4	æ 🎉	arsenic { arsenic tri	·			12	mg/kg	1.32	12.992	mg/kg	0.0013 %	1	
		033-003-00-0	215-481-4	1327-53-3				-		3 3		Ľ	
5		benzo[a]anthracene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3						J J			
6		benzo[a]pyrene; benzo[def]chrysene				< 0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
		601-032-00-3	200-028-5	50-32-8			99			3 3			
7		benzo[b]fluoranthene           601-034-00-4         205-911-9         205-99-2				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
8	0	benzo[ghi]perylene				< 0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
Ĺ		205-883-8 191-24-2							40.00	9/1.9			1202
9		benzo[k]fluoranthene				< 0.05	mg/kg		<0.05 mg/	mg/kg	<0.000005 %		<lod< td=""></lod<>
Ľ	ĺ	601-036-00-5 205-916-6 207-08-9				40.00			70.00	mg/ng			1200
10	æ	beryllium { beryllium oxide }				0.89	ma/ka	2.775	2.025	mg/kg	0.000203 %	1	
	ĺ	004-003-00-8	215-133-1	1304-56-9		0.00		2.770	2.020	mg/ng	0.000200 70	~	
11	≪\$	boron { boron tri (combined) }	bromide/trichloride/	10294-33-4, 10294-34-5,	-	0.7	mg/kg	13.43	7.709	mg/kg	0.000771 %	✓	
				7637-07-2									
12	-	cadmium { <mark>cadmium sulfide</mark> }			1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
		048-010-00-4	215-147-8	1306-23-6									
13	≪3	oxide (worst case)	•	1308-38-9		28	mg/kg	1.462	33.557	mg/kg	0.00336 %	✓	
					-								
14	~	chromium in chromium(VI) compounds { chromium(VI) oxide }				<1.2	mg/kg	1.923	<2.308	.308 mg/kg	<0.000231 %		<lod< td=""></lod<>
-	H		215-607-8	1333-82-0	$\vdash$								
15		<b>chrysene</b> 601-048-00-0 205-923-4 218-01-9			_	<0.05	mg/kg		<0.05 mg/k	mg/kg	<0.000005 %		<lod< td=""></lod<>
16		copper { dicopper o	oxide; copper (I) oxid			26	ma/ka	1.126	24.004	mg/kg	0.0024 %	<b>✓</b>	
L		029-002-00-X 215-270-7  1317-39-1				20	9		24.004 mg/kg		0.0024 /0		



#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
17	*	cyanides { salts of exception of complete ferricyanides and management of specified elsewhere	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5	200		$\vdash$								
18		dibenz[a,h]anthracene 601-041-00-2   200-181-8   53-70-3			-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluoranthene	200 101 0	po 10 0									
19			205-912-4	206-44-0	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20	0	fluorene		1		-0.0E	ma/ka		*0.0E	ma/ka	-0.00000E 9/		<lod< td=""></lod<>
20		201-695-5 86-73-7			1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
21	0	indeno[123-cd]pyre	ne			<0.05	ma/ka		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-893-2	193-39-5		<0.03	mg/kg						\LOD
22	*	lead {		ception of those	1	75	mg/kg		61.5	mg/kg	0.00615 %	✓	
	-	082-001-00-6			├							$\vdash$	
23	_	mercury { mercury		7407.04.7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
	_	080-010-00-X 231-299-8 7487-94-7 naphthalene			$\vdash$								
24		601-052-00-2 202-049-5 91-20-3			1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		nickel { nickel dihydroxide }											
25	•	028-008-00-X	235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		28	mg/kg	1.579	36.265	mg/kg	0.00363 %	✓	
26	0	pH		PH		7	рН		7	рН	7рН		
27	0	phenanthrene				<0.05	mg/kg		<0.05 mg/k	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-581-5	85-01-8		<0.03				mg/kg	<0.000000 70		\LOD
28	0	pyrene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>	
_			204-927-3	129-00-0						55			
29	*	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }			<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>	
		034-002-00-8											
30		zinc { zinc oxide }	045 000 5	404440		73	mg/kg	1.245	74.509	mg/kg	0.00745 %	<b>√</b>	
<u> </u>	-		215-222-5	1314-13-2	$\vdash$								
31	0	monohydric phenols			-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		vanadium / divanad	lium nentanyide: v	anadium pentoxide }	$\vdash$								
32	4		215-239-8	1314-62-1	1	32	mg/kg	1.785	46.843	mg/kg	0.00468 %	✓	
М	020 001 00 0 2 10 200 0 1011 02 1				1					Total:	0.0307 %		

#### Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration a**g** 

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 18 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





Classification of sample: SA104-1-24082021-0.20

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:

SA104-1-24082021-0.20 Chapter:

from contaminated sites) Moisture content:

20%

Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 03) (wet weight correction)

#### **Hazard properties**

None identified

#### **Determinands**

Moisture content: 20% Wet Weight Moisture Correction applied (MC)

#		Determinand  CLP index number		User entered data		Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene 201-469-6 83-32-9	_	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
			+							
2	0	acenaphthylene 205-917-1 208-96-8	_	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
-	$\vdash$	anthracene	+							
3		204-371-1   120-12-7	_	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
	æ	arsenic { arsenic trioxide }	+							
4	w.	033-003-00-0   215-481-4   1327-53-3	-	11	mg/kg	1.32	11.619 mg/kg	0.00116 %	✓	
		benzo[a]anthracene	+							
5		601-033-00-9   200-280-6	-	0.68	mg/kg		0.544 mg/kg	0.0000544 %	✓	
	П	benzo[a]pyrene; benzo[def]chrysene								
6		601-032-00-3 200-028-5 50-32-8	-	0.52	mg/kg		0.416 mg/kg	0.0000416 %	✓	
7		benzo[b]fluoranthene		0.68	mg/kg		0.544 mg/kg	0.0000544 %	,	
′		601-034-00-4 205-911-9 205-99-2	1	0.00			0.544 mg/kg	0.0000544 %	✓	
8	0	benzo[ghi]perylene		0.61	mg/kg		0.488 mg/kg	0.0000488 %	<b>√</b>	
		205-883-8  191-24-2		0.01			0.400 mg/kg	0.0000400 /8	~	
9		benzo[k]fluoranthene		0.55	mg/kg		0.44 mg/kg	0.000044 %	/	
Ľ		601-036-00-5 205-916-6 207-08-9		0.00				0.00001170	*	
10	æ	beryllium { beryllium oxide }		0.82	ma/ka	2.775	1.821 mg/kg	0.000182 %	1	
		004-003-00-8 215-133-1 1304-56-9							ľ	
11	<b>4</b>	boron { * boron tribromide/trichloride/trifluoride (combined) }   10294-33-4, 10294-34-5, 7637-07-2		<0.2	mg/kg	13.43	<2.686 mg/kg	<0.000269 %		<lod< th=""></lod<>
	æ	cadmium { cadmium sulfide }								
12		048-010-00-4   215-147-8   1306-23-6	_ 1	<0.2	mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
13	<b>4</b>	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		24	mg/kg	1.462	28.062 mg/kg	0.00281 %	<b>√</b>	
14	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0   215-607-8   1333-82-0		<1.2	mg/kg	1.923	<2.308 mg/kg	<0.000231 %		<lod< td=""></lod<>
-	Н	chrysene	+							
15		601-048-00-0 205-923-4 218-01-9	_	0.72	mg/kg		0.576 mg/kg	0.0000576 %	✓	
16	æ	copper { dicopper oxide; copper (I) oxide }		55	ma/ka	1 126	49.539 ma/ka	0.00495 %	,	
٥١	**	029-002-00-X  215-270-7  1317-39-1		55	під/кд	1.126	49.539 mg/kg	U.UU495 %	✓	



#		Determinand  CLP index number		CLP Note	User entere	d data	Conv. Factor	Compound co	inc.	Classification value	MC Applied	Conc. Not Used	
17	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }			<1	mg/kg	1.884	<1.884 ı	mg/kg	<0.000188 %		<lod< th=""></lod<>		
18		006-007-00-5 dibenz[a,h]anthrac				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		601-041-00-2	200-181-8	53-70-3						3 3			
19	0	fluoranthene				1.6	mg/kg		1.28	mg/kg	0.000128 %	1	
			205-912-4	206-44-0								Ľ	
20	Θ	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21	Θ	indeno[123-cd]pyre	ene 205-893-2	193-39-5		0.47	mg/kg		0.376	mg/kg	0.0000376 %	<b>√</b>	
22	4	lead { lead comp specified elsewhere		ception of those	1	68	mg/kg		54.4	mg/kg	0.00544 %	<b>√</b>	
$\vdash$	-	mercury { mercury dichloride }			+								
23	_		231-299-8	7487-94-7	-	<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
		naphthalene				0.05					0.000005.0/		
24			202-049-5	91-20-3	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	æ	nickel { nickel dihydroxide }										Ī	
25		028-008-00-X	235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		25	mg/kg	1.579	31.59	mg/kg	0.00316 %	✓	
26	Θ	pН		PH		7.8	рН		7.8	рН	7.8 pH		
27	9	phenanthrene				0.57			0.450		0.0000450.01	1	
27		•	201-581-5	85-01-8	1	0.57	mg/kg		0.456 ı	mg/kg	0.0000456 %	✓	
20	Θ	pyrene				1.6	no a /1		4.00	nn a /l	0.000438.0/	,	
28			204-927-3	129-00-0	1	1.6	mg/kg		1.28 mg/kg	0.000128 %	✓		
29	4				<1	mg/kg	1.405	<1.405 ı	mg/kg	<0.000141 %		<lod< th=""></lod<>	
Ш	-	034-002-00-8			$\perp$							4	
30	-					140	mg/kg	1.245	139.408	mg/kg	0.0139 %	1	
		030-013-00-7 215-222-5 1314-13-2			_					-		1	
31	0	monohydric phenols				<1	mg/kg		<1 ı	mg/kg	<0.0001 %		<lod< td=""></lod<>
$\vdash$	-	vanadium ( divana	dium pentacyida: v	anadium pentoxide }	$\vdash$							1	
32	~	023-001-00-8	215-239-8	1314-62-1	-	28	mg/kg	1.785	39.988	mg/kg	0.004 %	✓	
Г								Total:	0.0373 %				

### Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration a**g** 

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 20 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





Classification of sample: CBR118-1-24082021-0.10

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:

CBR118-1-24082021-0.10 Chapter:

from contaminated sites) Moisture content:

Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 6.4% 03) (wet weight correction)

#### **Hazard properties**

None identified

#### **Determinands**

Moisture content: 6.4% Wet Weight Moisture Correction applied (MC)

#		Determinand  CLP index number   EC Number   CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene		40.0E	ma/ka		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
ļ '		201-469-6 83-32-9		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lud< td=""></lud<>
2	0	acenaphthylene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
_		205-917-1 208-96-8		40.00	9/119		vo.oo mg/ng	40.000000 70		
3	0	anthracene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
Ĺ		204-371-1   120-12-7		10.00	9/1.9		10.00	10.000000 70		
4	4	arsenic { arsenic trioxide }		9.4	ma/ka	1.32	11.617 mg/kg	0.00116 %	1	
		033-003-00-0 215-481-4 1327-53-3							ľ	
5		benzo[a]anthracene		0.39	mg/kg		0.365 mg/kg	0.0000365 %	✓	
		601-033-00-9 200-280-6 56-55-3					3. 3			
6		benzo[a]pyrene; benzo[def]chrysene		0.45	mg/kg	,	0.421 mg/kg	0.0000421 %	✓	
	_	601-032-00-3 200-028-5 50-32-8	_							
7		benzo[b]fluoranthene		0.51	mg/kg		0.477 mg/kg	0.0000477 %	1	
		601-034-00-4 205-911-9 205-99-2							Ľ	
8	0	benzo[ghi]perylene		0.45	mg/kg		0.421 mg/kg	0.0000421 %	1	
		205-883-8 191-24-2	1						₩	
9		benzo[k]fluoranthene		0.3	mg/kg		0.281 mg/kg	0.0000281 %	1	
	-	601-036-00-5 205-916-6 207-08-9	1						Ľ	
10	æ 🎉	beryllium { beryllium oxide }		0.3	mg/kg	2.775	0.779 mg/kg	0.0000779 %	1	
		004-003-00-8 215-133-1 1304-56-9	1						Ľ	
	æ\$	boron { boron tribromide/trichloride/trifluoride (combined) }		0.0	,	40.40	0.000	0.0000000		
11		10294-33-4, 10294-34-5, 7637-07-2	_	<0.2	mg/kg	13.43	<2.686 mg/kg	<0.000269 %		<lod< td=""></lod<>
12	æ.	cadmium { cadmium sulfide }	1	<0.2	ma/ka	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
		048-010-00-4 215-147-8 1306-23-6	1.	<b>\0.2</b>	g/kg	1.200	10.207 Hig/Kg	C0.00002 70		LOD
13	4	chromium in chromium(III) compounds { • chromium(III) oxide (worst case) }		8.1	mg/kg	1.462	11.081 mg/kg	0.00111 %	✓	
	-	215-160-9   1308-38-9	+						$\vdash$	
14	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.2	ma/ka	1.923	<2.308 mg/kg	<0.000231 %		<lod< td=""></lod<>
'-		024-001-00-0 215-607-8 1333-82-0	-	<1.2	mg/kg	1.923	~2.000 mg/kg	30.000201 /0		\
<u> </u>	+	chrysene	+							
15		601-048-00-0 205-923-4 218-01-9	-	0.46	mg/kg		0.431 mg/kg	0.0000431 %	✓	
		copper { dicopper oxide; copper (I) oxide }	+						$\vdash$	
16	≪*	029-002-00-X 215-270-7 1317-39-1	-	13	mg/kg	1.126	13.7 mg/kg	0.00137 %	✓	
		020 002 00 // E10 210 /						I		



#		CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound o	onc.	Classification value	MC Applied	Conc. Not Used
17	4	cyanides { salts exception of completerricyanides and magnetic specified elsewhere 006-007-00-5	ex cyanides such a nercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
18		dibenz[a,h]anthrace	ene			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< th=""></lod<>
		601-041-00-2	200-181-8	53-70-3		<b>40.00</b>	g/kg			mg/kg	<0.000000 70		LOD
19	0	fluoranthene	205-912-4	206-44-0		0.93	mg/kg		0.87	mg/kg	0.000087 %	✓	
20	Θ	fluorene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21	0	indeno[123-cd]pyre	201-695-5 ene 205-893-2	193-39-5		0.31	mg/kg		0.29	mg/kg	0.000029 %	<b>√</b>	
22	4	lead {	oounds with the exc		1	9.6	mg/kg		8.986	mg/kg	0.000899 %	<b>√</b>	
	-	082-001-00-6	diablasida )										
23	_	mercury { mercury 080-010-00-X	231-299-8	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
24		naphthalene	201 200 0	1107 017		<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
			202-049-5	91-20-3						99			
25	_	nickel { <mark>nickel dihyc</mark> 028-008-00-X	lroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		6.2	mg/kg	1.579	9.166	mg/kg	0.000917 %	✓	
26	0	рН		PH		8.7	рН		8.7	рН	8.7 pH		
27	0	phenanthrene	201-581-5	85-01-8		0.46	mg/kg		0.431	mg/kg	0.0000431 %	<b>√</b>	
28	0	pyrene	204-927-3	129-00-0		1	mg/kg		0.936	mg/kg	0.0000936 %	<b>√</b>	
29	4	selenium { selenium cadmium sulphose in this Annex }				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
		034-002-00-8			$\vdash$							-	
30	-	zinc { zinc oxide } 030-013-00-7	215-222-5	1314-13-2	-	16	mg/kg	1.245	18.641	mg/kg	0.00186 %	✓	
31	0	monohydric phenol		P1186		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
32	4	,	adium { divanadium pentaoxide; vanadium pentoxide			8.2	mg/kg	1.785	13.702	mg/kg	0.00137 %	<b>√</b>	
			5 _ 5 5 6		1					Total:	0.0103 %	+	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration a**g** 

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 22 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





Classification of sample: WS105-1-24082021-0.30

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

Sample name: LoW Code:

WS105-1-24082021-0.30 Chapter:

from contaminated sites) Moisture content: Entry: 12%

17 05 04 (Soil and stones other than those mentioned in 17 05 03) (wet weight correction)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#		Determinand  CLP index number	CLP Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene   201-469-6   83-32-9	_	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
	_	acenaphthylene	+							
2	0	205-917-1 208-96-8	_	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		anthracene	+							
3		204-371-1   120-12-7	-	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
	æ	arsenic { arsenic trioxide }		40		4.00	44.040	0.00110.00	١.	
4	~	033-003-00-0 215-481-4  1327-53-3	-	10	mg/kg	1.32	11.619 mg/k	0.00116 %	✓	
5		benzo[a]anthracene		<0.05			<0.05 mg/ki	-0.000005.0/		<lod< td=""></lod<>
3		601-033-00-9 200-280-6 56-55-3		<0.05	mg/kg		<0.05 Hig/ki	<0.000005 %		<lud< td=""></lud<>
6		benzo[a]pyrene; benzo[def]chrysene		<0.05	mg/kg		<0.05 mg/ki	<0.000005 %		<lod< th=""></lod<>
Ĺ		601-032-00-3 200-028-5 50-32-8						,		
7		benzo[b]fluoranthene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4 205-911-9 205-99-2	-							
8	0	benzo[ghi]perylene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-883-8 [191-24-2	-							
9		benzo[k]fluoranthene	_	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-036-00-5 205-916-6 207-08-9	+							
10	€	beryllium { beryllium oxide }           004-003-00-8         215-133-1          1304-56-9	_	1.1	mg/kg	2.775	2.687 mg/kg	0.000269 %	✓	
11	4	boron {		0.6	mg/kg	13.43	7.091 mg/k	g 0.000709 %	✓	
12	4	cadmium { cadmium sulfide }	1	<0.2	ma/ka	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
Ľ		048-010-00-4 215-147-8 1306-23-6	Ľ	10.2		200		, 10.00002 /0		
13	₫.	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }	)	34	mg/kg	1.462	43.73 mg/k	0.00437 %	✓	
14	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0   215-607-8   1333-82-0		<1.2	mg/kg	1.923	<2.308 mg/kg	<0.000231 %		<lod< td=""></lod<>
$\vdash$	Н	chrysene	+							
15		601-048-00-0 205-923-4 218-01-9	_	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
16	æ\$	copper { dicopper oxide; copper (I) oxide }		31	mg/ka	1.126	30.714 mg/kg	0.00307 %	<b>√</b>	
L		029-002-00-X 215-270-7 1317-39-1						,	•	



#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
17	*	cyanides { salts exception of complete ferricyanides and managements.	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5 dibenz[a,h]anthrace	200		-								
18			200-181-8	53-70-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluoranthene	200 101 0	po 10 0									
19			205-912-4	206-44-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20	0	fluorene		1		<0.05	ma/ka		<0.05	malka	-0.00000E 9/		<lod< td=""></lod<>
20			201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
21	0	indeno[123-cd]pyre	ne			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
			205-893-2	193-39-5		<0.03	IIIg/kg		<b>~</b> 0.05	ilig/kg	<0.000003 78		\LOD
22	*	lead {		ception of those	1	30	mg/kg		26.4	mg/kg	0.00264 %	✓	
	-	082-001-00-6			-								
23	_	mercury { mercury		7407.04.7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
	_	naphthalene	231-299-8	7487-94-7	$\vdash$								
24		•	202-049-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		nickel { nickel dihyd		0.200									
25	•	028-008-00-X	235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		35	mg/kg	1.579	48.649	mg/kg	0.00486 %	✓	
26	0	pH		PH		8.1	рН		8.1	рН	8.1 pH		
27	0	phenanthrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-581-5	85-01-8		<b>40.00</b>	mg/kg			mg/kg	<0.000000 70		LOD
28	0	pyrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
				129-00-0						3 3			
29	*		nium { selenium compounds with the exception on ium sulphoselenide and those specified elsewhore.			<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
		034-002-00-8											
30		zinc { zinc oxide }	045,000,5	4044400		77	mg/kg	1.245	84.342	mg/kg	0.00843 %	<b>√</b>	
$\vdash$	-		215-222-5	1314-13-2	$\vdash$								
31	0	mononyaric pnenol	phydric phenols			<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
$\vdash$	هر	vanadium / divanad	P1186 nadium { divanadium pentaoxide; vanadium pentoxi										
32	4		215-239-8	1314-62-1	-	35	mg/kg	1.785	54.984	mg/kg	0.0055 %	✓	
М			<del>.</del>	1				1		Total:	0.0318 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration a**g** 

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 24 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





Classification of sample: CBR115-1-24082021-

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

Sample name: LoW Code:

CBR115-1-24082021-Chapter:

from contaminated sites) Moisture content:

Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 28% (wet weight correction)

03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 28% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound cond	c.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene	204 460 6	83-32-9		<0.05	mg/kg		<0.05 mg	g/kg	<0.000005 %		<lod< td=""></lod<>
2	0	acenaphthylene	201-469-6	83-32-9		<0.05	mg/kg		<0.05 m	g/kg	<0.000005 %		<lod< td=""></lod<>
		í	205-917-1	208-96-8		V0.03	ilig/kg		<0.05 III	y/ky	<0.000003 /6		\LOD
3	0	anthracene				<0.05	mg/kg		<0.05 m	g/kg	<0.000005 %		<lod< td=""></lod<>
				120-12-7									
4	æ	arsenic { arsenic tric	•			13	mg/kg	1.32	12.358 m	g/kg	0.00124 %	1	
				1327-53-3									
5		benzo[a]anthracene				<0.05	mg/kg		<0.05 mg	g/kg	<0.000005 %		<lod< td=""></lod<>
	Н			56-55-3									
6		benzo[a]pyrene; be		50-32-8		<0.05	mg/kg		<0.05 mg	g/kg	<0.000005 %		<lod< td=""></lod<>
7		benzo[b]fluoranther		005.00.0		<0.05	mg/kg		<0.05 mg	g/kg	<0.000005 %		<lod< td=""></lod<>
	H		205-911-9	205-99-2									
8	0	benzo[ghi]perylene	205-883-8	191-24-2		<0.05	mg/kg		<0.05 mg	g/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[k]fluoranthen		191-24-2									
9				207-08-9		<0.05	mg/kg		<0.05 m	g/kg	<0.000005 %		<lod< td=""></lod<>
10				207 00 3									
10	_			1304-56-9		1.1	mg/kg	2.775	2.198 m	g/kg	0.00022 %	✓	
11	₫.	boron { boron trik (combined) }		rifluoride 10294-33-4, 10294-34-5, 7637-07-2		1.1	mg/kg	13.43	10.637 m	g/kg	0.00106 %	1	
12	æ <u>&amp;</u>	cadmium { cadmiun			1	<0.2	ma/ka	1.285	<0.257 mg	g/kg	<0.00002 %		<lod< td=""></lod<>
12	Ĭ	048-010-00-4	215-147-8	1306-23-6	<u>'</u>	<b>VU.2</b>	ilig/kg	1.200	<0.257 III	y/ky	<0.00002 /0		LOD
13	≪\$	chromium in chromioxide (worst case)				33	mg/kg	1.462	34.727 m	g/kg	0.00347 %	✓	
				1308-38-9									
14	ll	chromium in chromioxide }	. , .			1.9	mg/kg	1.923	2.631 m	g/kg	0.000263 %	✓	
4-	Н	024-001-00-0 chrysene	215-607-8	1333-82-0		6.05			0.67	//	0.000007.07		1.65
15		-	205-923-4	218-01-9		<0.05	mg/kg		<0.05 m	g/kg	<0.000005 %		<lod< td=""></lod<>
16	-	copper { dicopper o		le } 1317-39-1		25	mg/kg	1.126	20.266 m	g/kg	0.00203 %	<b>√</b>	



Table   Second   Se	#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound con	nc.	Classification value	MC Applied	Conc. Not Used
18	17		exception of completerricyanides and management specified elsewhere	ex cyanides such a nercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884 m	ng/kg	<0.000188 %		<lod< th=""></lod<>
8   8   61-041-00-2   200-181-8   53-70-3   70   70   70   70   70   70   70   7	10			ene			~0.05	ma/ka		<0.05 m	na/ka	~0.000005.9/		-I OD
19	10		601-041-00-2	200-181-8	53-70-3		<0.03	mg/kg		<0.05 II	ig/kg	<0.000003 /6		\LOD
The principle	19	0		205 042 4	DOG 44 0		<0.05	mg/kg		<0.05 m	ng/kg	<0.000005 %		<lod< th=""></lod<>
	20	0	fluorene				<0.05	mg/kg		<0.05 m	ng/kg	<0.000005 %		<lod< td=""></lod<>
Part	21	0	indeno[123-cd]pyre	ne			<0.05	mg/kg		<0.05 m	ng/kg	<0.000005 %		<lod< td=""></lod<>
Mercury (mercury dichloride   1.353   1.353   1.353   1.353   1.354   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355   1.355	22	_	lead {	ounds with the exc		1	17	mg/kg		12.24 m	ng/kg	0.00122 %	<b>√</b>	
Second   S		-		dichlorido l										
Phanathrene	23	_			7487-94-7		<0.3	mg/kg	1.353	<0.406 m	ng/kg	<0.0000406 %		<lod< td=""></lod<>
Solid   Soli	24		naphthalene				<0.05	mg/kg		<0.05 m	ng/kg	<0.000005 %		<lod< td=""></lod<>
25					91-20-3									
PH	25	_		235-008-5 [1]			33	mg/kg	1.579	37.529 m	ng/kg	0.00375 %	✓	
201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-581-5     201-58	26	0	рН		PH		7.2	рН		7.2 p	Н	7.2 pH		
28	27	0	•	201-581-5	85-01-8		<0.05	mg/kg		<0.05 m	ng/kg	<0.000005 %		<lod< td=""></lod<>
Selenium {   Selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }	28	0	pyrene				<0.05	mg/kg		<0.05 m	ng/kg	<0.000005 %		<lod< td=""></lod<>
30 2 zinc { zinc oxide }	29	•	selenium { selenium cadmium sulphose in this Annex }	n compounds with	the exception of		<1	mg/kg	1.405	<1.405 m	ng/kg	<0.000141 %		<lod< td=""></lod<>
30 030-013-00-7 215-222-5  1314-13-2   49 mg/kg 1.245   43.914 mg/kg 0.00439 %						$\vdash$								
31 monohydric phenols P1186  2.7 mg/kg 1.944 mg/kg 0.000194 %  32 vanadium { divanadium pentaoxide; vanadium pentoxide } 0.0054 %  42 mg/kg 1.785 53.984 mg/kg 0.0054 %	30	-	,	215 222 5	1214 12 2	-	49	mg/kg	1.245	43.914 m	ng/kg	0.00439 %	✓	
32 vanadium { divanadium pentaoxide; vanadium pentoxide }	31	0					2.7	mg/kg		1.944 m	ng/kg	0.000194 %	<b>√</b>	
	32	_		nadium { divanadium pentaoxide; vanadium pentoxide			42	mg/kg	1.785	53.984 m	ng/kg	0.0054 %	<b>√</b>	
			UZ3-UU I-UU-0	Z 10-Z39-0	1314-02-1						Total:	0.0237 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

# **Supplementary Hazardous Property Information**

<u>HP 2: Oxidizing</u> "waste which may, generally by providing oxygen, cause or contribute to the combustion of other materials" Force this Hazardous property to non hazardous because To low to be oxidising

Hazard Statements hit:

Ox. Sol. 1; H271 "May cause fire or explosion; strong oxidiser."

Because of determinand:

chromium(VI) oxide: (compound conc.: 0.00026%)

Page 26 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





Classification of sample: WS105-9-24082021-

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

Sample name: LoW Code:

WS105-9-24082021-Chapter: Moisture content:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry: (wet weight correction)

03)

**Hazard properties** 

None identified

#### **Determinands**

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound	I conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH	PH				рН		8.2	рН	8.2 pH		
2		magnesium { magnesium { magnesium } 015-005-00-3	e; trimagnesium		9.7	mg/kg	1.85	15.25	mg/kg	0.00152 %	✓		
			1.							Total:	0.00152 %		

# Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound e\$ concentration





Classification of sample: CBR105A-1-25082021-0.60

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

LoW Code: Sample name:

CBR105A-1-25082021-0.60 Chapter: Moisture content:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 18% Entry: 03)

(wet weight correction)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 18% Wet Weight Moisture Correction applied (MC)

2 • a 3 • a 4 • a	acenaphthylene anthracene		83-32-9	CLP							MC Applied	Used
3 a a	acenaphthylene anthracene		83-32-9		< 0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
3 a a	anthracene	205-917-1									Н	
3 a	nthracene	205-917-1			<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
3 a			208-96-8								Ш	
4   🥆					<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
4   🥆			120-12-7								Ш	
	arsenic { <mark>arsenic tri</mark>	,			30	mg/kg	1.32	32.48	mg/kg	0.00325 %	1	
03	33-003-00-0	215-481-4	1327-53-3			3 3	-		J J		ľ	
5	enzo[a]anthracene	•			0.33	mg/kg		0.271	mg/kg	0.0000271 %	/	
60	01-033-00-9	200-280-6	56-55-3						99		ľ	
6 b	enzo[a]pyrene; be	nzo[def]chrysene			0.21	mg/kg		0.172	mg/kg	0.0000172 %	/	
60	01-032-00-3	200-028-5	50-32-8		0.21	mg/ng		0.172	mg/ng	0.0000112 70		
7   b	enzo[b]fluoranther	ne			0.23	mg/kg		0.189	mg/kg	0.0000189 %	/	
	01-034-00-4	205-911-9	205-99-2		0.23	mg/kg		0.109	mg/kg	0.0000103 /0	~	
8 a b	enzo[ghi]perylene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
$^{\circ}$	4	205-883-8	191-24-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
9 b	enzo[k]fluoranthen	ne			<0.05	ma/ka		<0.05	malka	<0.000005 %		<lod< td=""></lod<>
	01-036-00-5	205-916-6	207-08-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lud< td=""></lud<>
10 🚜 b	eryllium { berylliun	n oxide }			2.0		0.775	0.400	//	0.000040.0/		
101			1304-56-9	i	3.6	mg/kg	2.775	8.193	mg/kg	0.000819 %	<b>√</b>	
	ooron {		10294-33-4,		0.5	mg/kg	13.43	5.506	mg/kg	0.000551 %	<b>√</b>	
			10294-34-5, 7637-07-2									
12 & C	admium { cadmiun		1001 01 2								Н	
14			1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
	oxide (worst case)		` ,		23	mg/kg	1.462	27.565	mg/kg	0.00276 %	<b>√</b>	
			1308-38-9								Ш	
14 0	oxide }	ium(VI) compounds	{ chromium(VI)		<1.2	mg/kg	1.923	<2.308	mg/kg	<0.000231 %		<lod< td=""></lod<>
	chrysene	210-00 <i>1-</i> 0	1000-02-0	$\vdash$							Н	
15	-	205-923-4	218-01-9		0.28	mg/kg		0.23	mg/kg	0.000023 %	✓	
- C		xide; copper (I) oxic		Н	440	"		101.55				
16			1317-39-1		110	mg/kg	1.126	101.555	mg/kg	0.0102 %	<b>√</b>	

Page 28 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound co	nc.	Classification value	MC Applied	Conc. Not Used
17	*	cyanides { salts exception of completerricyanides and magnetised elsewhere	ex cyanides such a nercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884 r	ng/kg	<0.000188 %		<lod< th=""></lod<>
18		dibenz[a,h]anthrace	l ene  200-181-8	53-70-3		<0.05	mg/kg		<0.05 r	ng/kg	<0.000005 %		<lod< th=""></lod<>
19	0	fluoranthene	205-912-4	206-44-0		0.42	mg/kg		0.344 r	ng/kg	0.0000344 %	1	
20	0	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05 r	ng/kg	<0.000005 %		<lod< td=""></lod<>
21	0	indeno[123-cd]pyre		193-39-5		<0.05	mg/kg		<0.05 r	ng/kg	<0.000005 %		<lod< td=""></lod<>
22	4	lead { lead compospecified elsewhere 082-001-00-6		eption of those	1	44	mg/kg		36.08 r	ng/kg	0.00361 %	<b>√</b>	
23	4	mercury { mercury	dichloride } 231-299-8	7487-94-7		<0.3	mg/kg	1.353	<0.406 r	ng/kg	<0.0000406 %		<lod< td=""></lod<>
24		naphthalene	202-049-5	91-20-3		<0.05	mg/kg		<0.05 r	ng/kg	<0.000005 %		<lod< td=""></lod<>
25	*		droxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		63	mg/kg	1.579	81.597 r	ng/kg	0.00816 %	<b>√</b>	
26	0	рН		PH		7.9	рН		7.9 p	Н	7.9 pH		
27	0	phenanthrene	201-581-5	85-01-8		0.33	mg/kg		0.271 r	ng/kg	0.0000271 %	<b>√</b>	
28	0	pyrene	204-927-3	129-00-0		0.45	mg/kg		0.369 r	ng/kg	0.0000369 %	✓	
29	*	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhe in this Annex }				<1	mg/kg	1.405	<1.405 r	ng/kg	<0.000141 %		<lod< th=""></lod<>
30	4	034-002-00-8 zinc { <mark>zinc oxide</mark> }				83	ma/ka	1.245	84.715 r	ng/kg	0.00847 %	<b>✓</b>	
		030-013-00-7 monohydric phenol	215-222-5	1314-13-2	1					ng/ng		·	
31	9	mononyuno prieno		P1186		<1	mg/kg		<1 r	ng/kg	<0.0001 %		<lod< td=""></lod<>
32	4	vanadium { divanad 023-001-00-8	dium pentaoxide; va 215-239-8	nadium pentoxide  1314-62-1	}	62	mg/kg	1.785	90.759 r	ng/kg	0.00908 %	✓	
		0_0 001 00 0	2000	1011021						Total:	0.0478 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected





Classification of sample: CBR113-1-25082021-0.30

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

Sample name: LoW Code:

CBR113-1-25082021-0.30 Chapter:

Moisture content:

from contaminated sites)

21%

Entry:

17 05 04 (Soil and stones other than those mentioned in 17 05

03)

(wet weight correction)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 21% Wet Weight Moisture Correction applied (MC)

2 9	acenaphthene acenaphthylene			CLP	Coor ontoro	l data	Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
2					<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
2	acenaphthylene	201-469-6	83-32-9								Ш	
$\rightarrow$					<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
1 1		205-917-1	208-96-8								Н	
3	anthracene				<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
$\dashv$			120-12-7								Ш	
4	arsenic { arsenic tri	,			12	mg/kg	1.32	12.517	mg/kg	0.00125 %	1	
			1327-53-3									
5	benzo[a]anthracene				0.32	mg/kg		0.253	mg/kg	0.0000253 %	/	
-			56-55-3						- 0		Ľ	
6	benzo[a]pyrene; be 601-032-00-3		50-32-8		0.22	mg/kg		0.174	mg/kg	0.0000174 %	✓	
	benzo[b]fluoranther		00-32-6		0.00	//		0.000	- 4	0.0000000.0/	,	
7	601-034-00-4	205-911-9	205-99-2	1	0.29	mg/kg		0.229	mg/kg	0.0000229 %	✓	
8 •	benzo[ghi]perylene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-883-8	191-24-2						55			
9	benzo[k]fluoranther	ne			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
_			207-08-9						33			
10	beryllium { berylliun	n oxide }			0.98	ma/ka	2.775	2.149	mg/kg	0.000215 %	1	
	004-003-00-8	215-133-1	1304-56-9						J J		ľ	
	boron { boron trib (combined) }	oromide/trichloride/t	rifluoride									
11			10294-33-4, 10294-34-5, 7637-07-2		1.4	mg/kg	13.43	14.854	mg/kg	0.00149 %	<b>√</b>	
12	cadmium { cadmium			1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
4	048-010-00-4 chromium in chrom oxide (worst case)	ium(III) compounds	1306-23-6 { • chromium(III)		30	mg/kg	1.462	34.639	mg/kg	0.00346 %	<b>√</b>	
		215-160-9	1308-38-9	1								
14	oxide }	ium(VI) compounds			<1.2	mg/kg	1.923	<2.308	mg/kg	<0.000231 %		<lod< td=""></lod<>
		215-607-8	1333-82-0	$\vdash$							H	
15	chrysene		0.4.0.0.4.0		0.28	mg/kg		0.221	mg/kg	0.0000221 %	✓	
_			218-01-9								$\vdash$	
16	copper { dicopper o 029-002-00-X		le } 1317-39-1		28	mg/kg	1.126	24.905	mg/kg	0.00249 %	✓	





#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
17		cyanides { salts of exception of complete ferricyanides and m specified elsewhere	ex cyanides such as ercuric oxycyanide	ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
18		dibenz[a,h]anthrace		53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
19	0	fluoranthene	205-912-4	206-44-0		0.59	mg/kg		0.466	mg/kg	0.0000466 %	✓	
20	0	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21	8	indeno[123-cd]pyrei	ne 205-893-2	193-39-5		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
22		lead { • lead composite specified elsewhere 082-001-00-6		eption of those	1	38	mg/kg		30.02	mg/kg	0.003 %	✓	
23	æ	mercury { mercury (	dichloride }	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
24		naphthalene		91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
25	-		roxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		28	mg/kg	1.579	34.939	mg/kg	0.00349 %	✓	
26	0	pH		PH		7.4	рН		7.4	рН	7.4 pH		
27	9	phenanthrene	201-581-5	85-01-8		0.4	mg/kg		0.316	mg/kg	0.0000316 %	✓	
28	0	pyrene	204-927-3	129-00-0		0.52	mg/kg		0.411	mg/kg	0.0000411 %	✓	
29	≪\$	selenium { selenium cadmium sulphosele in this Annex }				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< th=""></lod<>
	$\vdash$	034-002-00-8 zinc { zinc oxide }											
30	-		215-222-5	1314-13-2	L	61	mg/kg	1.245	59.983	mg/kg	0.006 %	✓	
31	0	monohydric phenols		P1186		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
32	_	vanadium { divanad	<mark>ium pentaoxide; va</mark> 215-239-8	nadium pentoxide }		36	mg/kg	1.785	50.771	mg/kg	0.00508 %	✓	
		0_0 00 1 00 0 P	0 200 0		_					Total:	0.0274 %	H	L

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected



Classification of sample: CBR109-1-25082021-0.30

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

LoW Code: Sample name:

CBR109-1-25082021-0.30 Chapter: Moisture content:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 11% Entry: 03) (wet weight correction)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 11% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
			201-469-6	83-32-9								Ш	
2	0	acenaphthylene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-917-1	208-96-8								Н	
3	0	anthracene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
				120-12-7								Ш	
4	4	arsenic { arsenic tri	,			11	mg/kg	1.32	12.926	mg/kg	0.00129 %	1	
				1327-53-3									
5		benzo[a]anthracene				0.31	mg/kg		0.276	mg/kg	0.0000276 %	1	
				56-55-3						- 0		Ľ	
6		benzo[a]pyrene; be 601-032-00-3		50-32-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
7		benzo[b]fluoranther		30-32-6		0.05			0.05		0.000005.0/	Н	
1		601-034-00-4	205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
8	0	benzo[ghi]perylene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-883-8	191-24-2						3 3			
9		benzo[k]fluoranther	ne			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
				207-08-9						3 3		Ш	
10	_	beryllium { berylliun	n oxide }			1	ma/ka	2.775	2.47	mg/kg	0.000247 %	1	
		004-003-00-8	215-133-1	1304-56-9								Ľ	
	4	boron { boron trib (combined) }	oromide/trichloride/t	rifluoride									
11				10294-33-4, 10294-34-5, 7637-07-2		0.8	mg/kg	13.43	9.562	mg/kg	0.000956 %	<b>√</b>	
12	_	cadmium { cadmium		1000.00.0	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
13	4	048-010-00-4 chromium in chrom oxide (worst case)	ium(III) compounds	1306-23-6 { • chromium(III)		33	mg/kg	1.462	42.926	mg/kg	0.00429 %	<b>√</b>	
	Ш		215-160-9	1308-38-9									
14	<b>«</b>	oxide }	ium(VI) compounds			<1.2	mg/kg	1.923	<2.308	mg/kg	<0.000231 %		<lod< td=""></lod<>
	Н		215-607-8	1333-82-0	_								
15		chrysene	205 200 4	040.04.0		0.28	mg/kg		0.249	mg/kg	0.0000249 %	✓	
	_	601-048-00-0 copper { dicopper o		218-01-9								$\vdash$	
16	4			1817-39-1		43	mg/kg	1.126	43.088	mg/kg	0.00431 %	✓	





					Т				1			L	
#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
17	<b>₹</b>	cyanides { salts of exception of completerricyanides and managements of specified elsewhere of the specified elsewhere of the salts of	ex cyanides such as ercuric oxycyanide	e with the s ferrocyanides,	0	<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %	2	<lod< td=""></lod<>
18		dibenz[a,h]anthrace	ene 200-181-8	53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
19	0	fluoranthene	205-912-4	206-44-0		0.5	mg/kg		0.445	mg/kg	0.0000445 %	<b>√</b>	
20	0	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21	0	indeno[123-cd]pyre	ne 205-893-2	193-39-5		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
22	♣	lead { lead comp specified elsewhere 082-001-00-6		eption of those	1	42	mg/kg		37.38	mg/kg	0.00374 %	✓	
23	4	mercury { mercury o	dichloride }	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
24		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
25	-		roxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		31	mg/kg	1.579	43.578	mg/kg	0.00436 %	<b>√</b>	
26	0	pH		PH		7.5	рН		7.5	рН	7.5 pH		
27	0	phenanthrene	201-581-5	85-01-8		0.32	mg/kg		0.285	mg/kg	0.0000285 %	✓	
28	0	pyrene	204-927-3	129-00-0		0.47	mg/kg		0.418	mg/kg	0.0000418 %	✓	
29	♣	selenium { selenium cadmium sulphosel in this Annex }				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
30	4	zinc { zinc oxide }	215-222-5	1314-13-2		79	mg/kg	1.245	87.516	mg/kg	0.00875 %	✓	
31	0	monohydric phenols		P1186		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
32	*	vanadium { divanad 023-001-00-8	lium pentaoxide; va			35	mg/kg	1.785	55.609	mg/kg	0.00556 %	<b>√</b>	
		020 001 00-0 P	2.0 200 0	1017 02 1	_					Total:	0.0344 %	H	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected



Classification of sample: CBR101-1-25082021-0.40

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

Sample name: LoW Code:

**CBR101-1-25082021-0.40** Chapter:

Moisture content:

5.5%

Fintry:

from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

03)

(wet weight correction)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 5.5% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	8	acenaphthene	l			0.46	mg/kg		0.435	mg/kg	0.0000435 %	∠ ✓	
Ľ		2	201-469-6	83-32-9		0.40	mg/kg		0.400	mg/kg	0.0000400 70	<b>'</b>	
2	0	acenaphthylene				0.31	mg/kg		0.293	mg/kg	0.0000293 %	1	
		2	205-917-1	208-96-8		0.01			0.200	mg/ng	0.0000200 70	<b>'</b>	
3	0	anthracene				1.7	mg/kg		1.607	mg/kg	0.000161 %	/	
Ľ		2	204-371-1	120-12-7			g/ng		1.007	mg/ng	0.000101 /0	<b>"</b>	
4	4	arsenic { arsenic tric	oxide }			17	mg/kg	1.32	21.211	mg/kg	0.00212 %	<b>√</b>	
	•	033-003-00-0	215-481-4	1327-53-3		17	ilig/kg	1.02	21.211	ilig/kg	0.00212 /0	_	
5		benzo[a]anthracene	!			7.3	mg/kg		6.899	mg/kg	0.00069 %	/	
Ľ		601-033-00-9	200-280-6	56-55-3		7.5	mg/kg		0.000	mg/kg	0.00003 70	<b>'</b>	
6		benzo[a]pyrene; ber	nzo[def]chrysene			7	mg/kg		6.615	mg/kg	0.000662 %	/	
Ĺ		601-032-00-3	200-028-5	50-32-8								•	
7		benzo[b]fluoranthen				7.2	mg/kg		6.804	mg/kg	0.00068 %	1	
		601-034-00-4	205-911-9	205-99-2								•	
8	0	benzo[ghi]perylene				5.2	mg/kg		4.914	mg/kg	0.000491 %	/	
		2	205-883-8	191-24-2						3 3		ľ	
9		benzo[k]fluoranthen				3.9	mg/kg		3.686	mg/kg	0.000369 %	/	
				207-08-9						3 3		ľ	
10	_					0.97	mg/kg	2.775	2.544	mg/kg	0.000254 %	1	
		004-003-00-8	215-133-1	1304-56-9								ľ	
11	*	boron { boron trib (combined) }				1.1	ma/ka	13.43	13.96	mg/kg	0.0014 %	<b>√</b>	
				10294-33-4, 10294-34-5, 7637-07-2			g/itg	10.10	10.00	mg/ng	0.0011 /0	•	
12	4	cadmium { cadmium	n sulfide }		1	<0.2	ma/ka	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
		048-010-00-4	215-147-8	1306-23-6	Ĺ	10.2		200	10.207	9,9			1202
13	*	chromium in chromi oxide (worst case)	. , .	` ,		26	mg/kg	1.462	35.91	mg/kg	0.00359 %	✓	
				1308-38-9								Ш	
14	*	chromium in chromi oxide } 024-001-00-0	. , .	{ chromium(VI)		<1.2	mg/kg	1.923	<2.308	mg/kg	<0.000231 %		<lod< td=""></lod<>
$\vdash$		chrysene	13-007-0	1333-02-0	H							H	
15		•	205-923-4	218-01-9		5.3	mg/kg		5.009	mg/kg	0.000501 %	✓	
16	4	601-048-00-0 205-923-4 218-01-9 copper { dicopper oxide; copper (I) oxide }				130	ma/ka	1.126	138.315	mg/kg	0.0138 %	<b>√</b>	
		029-002-00-X	215-270-7	1317-39-1		100	g/ng	20	100.010	9/109	3.0100 /0	٧	





#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
17		cyanides { salts of exception of complete ferricyanides and management of specified elsewhere the control of the control of the cyanides and management of the cyanides are salted to the cyanides of the cyan	ex cyanides such as ercuric oxycyanide	ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
18		dibenz[a,h]anthrace	ene 200-181-8	53-70-3		1.2	mg/kg		1.134	mg/kg	0.000113 %	<b>√</b>	
19	0	fluoranthene		206-44-0		12	mg/kg		11.34	mg/kg	0.00113 %	<b>√</b>	
20	0	fluorene		86-73-7		0.45	mg/kg		0.425	mg/kg	0.0000425 %	<b>√</b>	
21	0	indeno[123-cd]pyre	ne 205-893-2	193-39-5		4.8	mg/kg		4.536	mg/kg	0.000454 %	<b>√</b>	
22	4	lead { lead comp specified elsewhere 082-001-00-6		eption of those	1	90	mg/kg		85.05	mg/kg	0.00851 %	✓	
23	4	mercury { mercury (	dichloride }	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
24		naphthalene	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
25	-	028-008-00-X	roxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		33	mg/kg	1.579	49.257	mg/kg	0.00493 %	✓	
26	0	pH		PH		7.8	рН		7.8	рН	7.8 pH		
27	0	phenanthrene	201-581-5	85-01-8		5.1	mg/kg		4.82	mg/kg	0.000482 %	<b>√</b>	
28	0	pyrene	204-927-3	129-00-0		12	mg/kg		11.34	mg/kg	0.00113 %	<b>√</b>	
29	*	selenium { selenium cadmium sulphosel in this Annex }				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< th=""></lod<>
$\vdash$		034-002-00-8 zinc { zinc oxide }										Н	
30	-		215-222-5	1314-13-2		320	mg/kg	1.245	376.402	mg/kg	0.0376 %	✓	
31	0	monohydric phenols	5	P1186		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
32	4	vanadium { divanad	•			37	mg/kg	1.785	62.419	mg/kg	0.00624 %	✓	
			001-00-8 215-239-8 1314-62-1							Total:	0.0862 %	Н	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected



Classification of sample: CBR111-1-25082021-0.20

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

LoW Code: Sample name:

CBR111-1-25082021-0.20 Chapter: Moisture content:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 13% Entry: 03)

(wet weight correction)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
			201-469-6	83-32-9								Ш	
2	Θ	acenaphthylene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-917-1	208-96-8								Н	
3	0	anthracene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
				120-12-7								Ш	
4	4	arsenic { arsenic tri	· ·			21	mg/kg	1.32	24.122	mg/kg	0.00241 %	<b>√</b>	
				1327-53-3								_	
5		benzo[a]anthracene				0.98	mg/kg		0.853	mg/kg	0.0000853 %	/	
				56-55-3								ľ	
6		benzo[a]pyrene; be 601-032-00-3		50-32-8		1.4	mg/kg		1.218	mg/kg	0.000122 %	✓	
7		benzo[b]fluoranther		00-32-0		1.2	mg/kg		1.044	mg/kg	0.000104 %	,	
'		601-034-00-4	205-911-9	205-99-2		1.2	mg/kg		1.044	ilig/kg	0.000104 %	✓	
8	0	benzo[ghi]perylene		101.01.0		0.89	mg/kg		0.774	mg/kg	0.0000774 %	<b>√</b>	
				191-24-2								$\square$	
9		benzo[k]fluoranther				0.68	mg/kg		0.592	mg/kg	0.0000592 %	<b>√</b>	
				207-08-9								Ш	
10	4	beryllium { berylliun		4004 500		1.7	mg/kg	2.775	4.105	mg/kg	0.00041 %	✓	
	æ	004-003-00-8 boron {		1304-56-9								$\vdash$	
	•	(combined) }	oronnac, tricinionac, t	illidorido									
11				10294-33-4, 10294-34-5, 7637-07-2		0.9	mg/kg	13.43	10.516	mg/kg	0.00105 %	✓	
12	4	cadmium { cadmium		4000.00.0	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
13	4	chromium in chrom oxide (worst case)	ium(III) compounds			41	mg/kg	1.462	52.134	mg/kg	0.00521 %	<b>√</b>	
			215-160-9	1308-38-9								Ш	
14	4	oxide }	ium(VI) compounds			<1.2	mg/kg	1.923	<2.308	mg/kg	<0.000231 %		<lod< td=""></lod<>
	H		215-607-8	1333-82-0								$\vdash$	
15		chrysene		0.4.0.0.4.0		0.88	mg/kg		0.766	mg/kg	0.0000766 %	✓	
				218-01-9								$\vdash$	
16	4	copper { dicopper o 029-002-00-X		<mark>le</mark> } 1317-39-1		65	mg/kg	1.126	63.669	mg/kg	0.00637 %	✓	





#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound o	onc.	Classification value	MC Applied	Conc. Not Used
17		cyanides { salts of exception of completerricyanides and magnetified elsewhere constructions of the construction of the constr	ex cyanides such as nercuric oxycyanide	ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
18		dibenz[a,h]anthrace		53-70-3		0.2	mg/kg		0.174	mg/kg	0.0000174 %	<b>√</b>	
19	0	fluoranthene		206-44-0		1.3	mg/kg		1.131	mg/kg	0.000113 %	<b>√</b>	
20	0	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21	0	indeno[123-cd]pyre	ne 205-893-2	193-39-5		0.76	mg/kg		0.661	mg/kg	0.0000661 %	✓	
22		lead { • lead comp specified elsewhere		eption of those	1	96	mg/kg		83.52	mg/kg	0.00835 %	✓	
23	æ	082-001-00-6 mercury { mercury ( 080-010-00-X	dichloride }	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
24		naphthalene		91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
25	-		roxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		47	mg/kg	1.579	64.586	mg/kg	0.00646 %	✓	
26	9	pH		PH		7.6	рН		7.6	рН	7.6 pH		
27	0	phenanthrene	201-581-5	85-01-8		0.34	mg/kg		0.296	mg/kg	0.0000296 %	✓	
28	0	pyrene	204-927-3	129-00-0		1.4	mg/kg		1.218	mg/kg	0.000122 %	✓	
29	4	selenium { selenium cadmium sulphosel in this Annex }				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< th=""></lod<>
	$\vdash$	034-002-00-8 zinc { zinc oxide }										$\vdash$	
30	-		215-222-5	1314-13-2		170	mg/kg	1.245	184.093	mg/kg	0.0184 %	✓	
31	0	monohydric phenol		P1186		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
32	_	vanadium { divanad	•			53	mg/kg	1.785	82.315	mg/kg	0.00823 %	✓	
	Ш	023-001-00-0	01-00-8 215-239-8 1314-62-1							Total:	0.0585 %	H	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

**<LOD** Below limit of detection

ND Not detected



Classification of sample: CBR124-1-25082021-0.20

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

LoW Code: Sample name:

CBR124-1-25082021-0.20 Chapter: Moisture content:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry: 03)

(wet weight correction)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

2 accident and accident accide	cenaphthylene  nthracene  rsenic { arsenic tric 33-003-00-0   enzo[a]anthracene 01-033-00-9   enzo[a]pyrene; be	205-917-1 204-371-1 20xide } 215-481-4	83-32-9 208-96-8 120-12-7 1327-53-3	CLP	<0.05 0.34 0.69	mg/kg		<0.05	mg/kg	<0.000005 % 0.0000299 %	MC Applied	<lod< th=""></lod<>
3 an an an an ar	cenaphthylene  nthracene  rsenic { arsenic tric 33-003-00-0   enzo[a]anthracene 01-033-00-9   enzo[a]pyrene; be	205-917-1 204-371-1 pxide } 215-481-4	208-96-8 120-12-7					0.299	mg/kg	0.0000299 %	<b>√</b>	
3 an an an an ar	nthracene rsenic { arsenic tric 33-003-00-0 cenzo[a]anthracene 01-033-00-9 cenzo[a]pyrene; be	204-371-1 pxide } 215-481-4	120-12-7					0.299	mg/kg	0.0000299 %	✓	'
4  ars	nthracene rsenic { arsenic tric 33-003-00-0 cenzo[a]anthracene 01-033-00-9 cenzo[a]pyrene; be	204-371-1 pxide } 215-481-4	120-12-7		0.69							
4  ars	rsenic { arsenic tric 33-003-00-0 cenzo[a]anthracene 01-033-00-9 cenzo[a]pyrene; be	oxide } 215-481-4			0.69							
5 be 601 7 be 601 8 be 601 9 be 601	rsenic { arsenic tric 33-003-00-0 cenzo[a]anthracene 01-033-00-9 cenzo[a]pyrene; be	oxide } 215-481-4				mg/kg		0.607	mg/kg	0.0000607 %	1	ı
5 be 601 7 be 601 8 be 601 9 be 601	33-003-00-0	215-481-4	1327-53-3								1	
5 be 601 7 be 601 8 be 601 9 be 601	enzo[a]anthracene 01-033-00-9 enzo[a]pyrene; be		1327-53-3		13	mg/kg	1.32	15.105	mg/kg	0.00151 %	1	1
6 601 6 be 601 7 be 601 8 be 9 be 601	01-033-00-9 enzo[a]pyrene; be								55		*	
601 6 be 601 7 be 601 8 be 601 9 be 601	enzo[a]pyrene; be	200-280-6			3.6	mg/kg		3.168	mg/kg	0.000317 %	1	1
6 601 7 be 601 8 be 601 9 be 601			56-55-3		0.0	mg/ng		0.100	mg/ng	0.000011 70	*	ı
601 7 be 601 8 be 601 9 be 601	24 000 00 0	nzo[def]chrysene			5.2	mg/kg		4.576	mg/kg	0.000458 %	/	1
9 be 601	01-032-00-3	200-028-5	50-32-8	1	5.2	mg/kg		4.570	ilig/kg	0.000430 /0	_	1
8 be be 601	enzo[b]fluoranther	ie			4.3	mg/kg		3.784	mg/kg	0.000378 %	,	
9 be 601	01-034-00-4	205-911-9	205-99-2	1	4.3	mg/kg		3.704	ilig/kg	0.000376 %	✓	1
9 be	enzo[ghi]perylene				3.1	mg/kg		2.728	mg/kg	0.000273 %	1	
601	4	205-883-8	191-24-2	1	3.1	ilig/kg		2.720	ilig/kg	0.000273 /6	~	ı
601	enzo[k]fluoranthen	е			2.4			2.442		0.000211 %	,	
	01-036-00-5	205-916-6	207-08-9		2.4	mg/kg		2.112	mg/kg	0.000211%	✓	1
10 🅰 be	eryllium { berylliun	oxide }			4.4		0.775	0.007	(1	0.000000.0/		
10			1304-56-9		1.1	mg/kg	2.775	2.687	mg/kg	0.000269 %	✓	1
	oron {		rifluoride 10294-33-4, 10294-34-5, 7637-07-2		1.1	mg/kg	13.43	13	mg/kg	0.0013 %	<b>√</b>	
12 🥰 ca	admium { <mark>cadmiun</mark>	n sulfide }		1	0.5	mg/kg	1 285	0.566	mg/kg	0.000044 %	1	
	18-010-00-4	215-147-8	1306-23-6	1 '	0.5	mg/kg	1.200	0.500	ilig/kg	0.000044 /0	~	ı
	xide (worst case) }				31	mg/kg	1.462	39.871	mg/kg	0.00399 %	✓	
			1308-38-9	$\vdash$								i
14 oxi	xide }	um(VI) compounds	1333-82-0		<1.2	mg/kg	1.923	<2.308	mg/kg	<0.000231 %		<lod< td=""></lod<>
		215-607-8	1333-02-0	$\vdash$								
15	hrysene	205 022 4	219 01 0	-	3.2	mg/kg		2.816	mg/kg	0.000282 %	✓	ı
			218-01-9 le }	H								
16	opper { dicopper o	r { dicopper oxide; copper (I) oxide } 2-00-X			46	mg/kg	1.126	45.576	mg/kg	0.00456 %	✓	1





#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
17		cyanides { salts exception of completerricyanides and magnetised elsewhere 006-007-00-5	ex cyanides such as nercuric oxycyanide	ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
18		dibenz[a,h]anthrace	ene 200-181-8	53-70-3		0.69	mg/kg		0.607	mg/kg	0.0000607 %	<b>√</b>	
19	$\vdash$	fluoranthene		206-44-0		5.8	mg/kg		5.104	mg/kg	0.00051 %	✓	
20	0	fluorene		86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21	0	indeno[123-cd]pyre	ne 205-893-2	193-39-5		2.6	mg/kg		2.288	mg/kg	0.000229 %	✓	
22		lead {		eption of those	1	48	mg/kg		42.24	mg/kg	0.00422 %	✓	
23	æ	082-001-00-6 mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
24		naphthalene	202-049-5	91-20-3		0.22	mg/kg		0.194	mg/kg	0.0000194 %	✓	
25	-		Iroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		62	mg/kg	1.579	86.177	mg/kg	0.00862 %	<b>√</b>	
26	0	pH		PH		7.8	рН		7.8	рН	7.8 pH		
27	0	phenanthrene	201-581-5	85-01-8		1.2	mg/kg		1.056	mg/kg	0.000106 %	✓	
28	0	pyrene	204-927-3	129-00-0		6.5	mg/kg		5.72	mg/kg	0.000572 %	✓	
29	æ	selenium { selenium cadmium sulphosel in this Annex }				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< th=""></lod<>
	$\vdash$	034-002-00-8 zinc { zinc oxide }										H	
30	-		215-222-5	1314-13-2		120	mg/kg	1.245	131.442	mg/kg	0.0131 %	✓	
31	0	monohydric phenol	s	P1186		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
32	_	vanadium { divanad	•	nadium pentoxide }		38	mg/kg	1.785	59.697	mg/kg	0.00597 %	<b>√</b>	
	ш	020 001 00-0	01-00-8 215-239-8 1314-62-1							Total:	0.0478 %	H	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

**<LOD** Below limit of detection

ND Not detected



Classification of sample: WS107-1-25082021-0.30

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

LoW Code: Sample name:

WS107-1-25082021-0.30 Chapter: Moisture content:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 11% Entry: 03)

(wet weight correction)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 11% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	2	<lod< th=""></lod<>
_			201-469-6	83-32-9									
2	•	acenaphthylene				<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-917-1	208-96-8									
3	•	anthracene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			204-371-1	120-12-7									
4	æ\$	arsenic { arsenic tri	oxide }			11	mg/kg	1.32	12.926	mg/kg	0.00129 %	1	
L.		033-003-00-0	215-481-4	1327-53-3					.2.020	9,9	0.00.20 /0	ľ	
5		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
Ľ		601-020-00-8	200-753-7	71-43-2		<b>40.001</b>	mg/kg		<b>40.001</b>	mg/kg	<0.0000001 70		LOD
6		benzo[a]anthracene	Э			0.45	mg/kg		0.401	mg/kg	0.0000401 %	/	
١		601-033-00-9	200-280-6	56-55-3	İ	0.43	mg/kg		0.401	ilig/kg	0.0000401 /6	\ <u>\</u>	
7		benzo[a]pyrene; be	nzo[def]chrysene	,		0.40	nn a /l. a		0.426		0.0000426.0/	,	
′		601-032-00-3	200-028-5	50-32-8	1	0.49	mg/kg		0.436	mg/kg	0.0000436 %	✓	
		benzo[b]fluoranther	ne	1		0.44			2.005	,	0.0000005.0/	1	
8		601-034-00-4	205-911-9	205-99-2	1	0.41	mg/kg		0.365	mg/kg	0.0000365 %	✓	
		benzo[ghi]perylene											
9				191-24-2		0.34	mg/kg		0.303	mg/kg	0.0000303 %	✓	
		benzo[k]fluoranther		1.0.2.2									
10				207-08-9		0.27	mg/kg		0.24	mg/kg	0.000024 %	✓	
11	æ	beryllium { berylliun		<u> </u>		0.00		0.775	0.404		0.000040.0/	,	
11	_	004-003-00-8	215-133-1	1304-56-9		0.86	mg/kg	2.775	2.124	mg/kg	0.000212 %	✓	
12	₫	boron { boron trit (combined) }		rifluoride 10294-33-4, 10294-34-5, 7637-07-2		0.6	mg/kg	13.43	7.172	mg/kg	0.000717 %	✓	
13	æ	cadmium { cadmium	n sulfide }	1	1	<0.2	mg/kg	1 285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
		048-010-00-4	215-147-8	1306-23-6	Ľ	<b>VO.2</b>	mg/kg	1.200	V0.207	mg/kg	<0.00002 70		\LOD
14	*	chromium in chrom oxide (worst case)	} `´´	{ • chromium(III)		26	mg/kg	1.462	33.82	mg/kg	0.00338 %	✓	
15	4	chromium in chrom oxide }	ium(vi) compounds	s ( critornium(VI)		<1.2	mg/kg	1.923	<2.308	mg/kg	<0.000231 %		<lod< td=""></lod<>
			215-607-8	1333-82-0			5 5			3 3			
16		chrysene				0.37	mg/kg		0.329	mg/kg	0.0000329 %	<b>/</b>	
Ľ		601-048-00-0	205-923-4	218-01-9		3.0.	9,9			9'''9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	



#			Determinand		CLP Note	User entered	l data	Conv.	Compound co	nc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	SLP							AC/	
17	4	copper { dicopper o	oxide; copper (I) oxi			63	mg/kg	1.126	63.129 r	ng/kg	0.00631 %	<b>√</b>	
		029-002-00-X	215-270-7	1317-39-1						-		ľ	
18	<b>4</b>	exception of completerricyanides and management specified elsewhere	nercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884 r	ng/kg	<0.000188 %		<lod< th=""></lod<>
		006-007-00-5											
19		dibenz[a,h]anthrace	ene 200-181-8	F0.70.0	_	<0.05	mg/kg		<0.05 r	ng/kg	<0.000005 %		<lod< th=""></lod<>
		601-041-00-2 ethylbenzene	200-181-8	53-70-3							<u> </u>	Н	
20			202-849-4	100-41-4	_	<0.001	mg/kg		<0.001 r	ng/kg	<0.0000001 %		<lod< th=""></lod<>
	8	fluoranthene	202 0 10 1	100 11 1							0.00004.04		
21			205-912-4	206-44-0	_	0.91	mg/kg		0.81 r	ng/kg	0.000081 %	<b>√</b>	
22	0	fluorene	1			<0.05	mg/kg		<0.05 r	ng/kg	<0.000005 %		<lod< th=""></lod<>
			201-695-5	86-73-7		<b>VO.03</b>	ilig/kg		<0.05 I	ilg/kg	<0.000003 /8		\LUD
23	0	indeno[123-cd]pyre				0.27	mg/kg		0.24 r	ng/kg	0.000024 %	/	
	_		205-893-2	193-39-5	-							ľ	
24	e <b>Ç</b>	lead { • lead comp		eption of those		40	no a /l. a		40.64		0.00426.0/	١,	
24		specified elsewhere	e in this Annex }	1	1	49	mg/kg		43.61 r	ng/kg	0.00436 %	✓	
	_	082-001-00-6 mercury { mercury	diablarida )		+							Н	
25	æ <b>\$</b>	, ,	231-299-8	7487-94-7	_	<0.3	mg/kg	1.353	<0.406 r	ng/kg	<0.0000406 %		<lod< td=""></lod<>
		naphthalene	231-233-0	1401-34-1								Н	
26		•	202-049-5	91-20-3	-	<0.05	mg/kg		<0.05 r	ng/kg	<0.000005 %		<lod< td=""></lod<>
	æ	nickel { nickel dihyd	<mark>lroxide</mark> }									П	
27	ľ		235-008-5 [1]	12054-48-7 [1]		29	mg/kg	1.579	40.767 r	ng/kg	0.00408 %	✓	
			234-348-1 [2]	11113-74-9 [2]								Н	
28	0	pH		PH	_	8.1	рН		8.1 p	Н	8.1 pH		
	_	phenanthrene		ГП	+							Н	
29	9	•	201-581-5	85-01-8	_	0.79	mg/kg		0.703 r	ng/kg	0.0000703 %	<b>√</b>	
30	0	pyrene				0.00			0.72		0.000072.0/	,	
30			204-927-3	129-00-0		0.82	mg/kg		0.73 r	ng/kg	0.000073 %	✓	
31	<b>4</b>	selenium { selenium cadmium sulphose in this Annex }	n compounds with t lenide and those sp			<1	mg/kg	1.405	<1.405 r	ng/kg	<0.000141 %		<lod< th=""></lod<>
		toluene	I		+							Н	
32			203-625-9	108-88-3	1	<0.001	mg/kg		<0.001 r	ng/kg	<0.0000001 %		<lod< td=""></lod<>
33	0	TPH (C6 to C40) po	etroleum group	*		<10	mg/kg		<10 r	ng/ka	<0.001 %		<lod< th=""></lod<>
				TPH	1		9			39	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ш	
34			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002 r	mg/kg	<0.0000002 %		<lod< th=""></lod<>
35	æ g					85	mg/ka	1.245	94.163 r	ng/kg	0.00942 %	/	
Ĺ			215-222-5	1314-13-2	1					J g		Ľ	
36	0	monohydric phenol	s	D4400		<1	mg/kg		<1 r	ng/kg	<0.0001 %		<lod< th=""></lod<>
_	-	vanadium ( divar =	dium pontoovido	P1186	+							Н	
37	4		<mark>dium pentaoxide; va</mark> 215-239-8	1314-62-1	1	27	mg/kg	1.785	42.898 r	ng/kg	0.00429 %	✓	
38		tert-butyl methyl eth 2-methoxy-2-methy	her; MTBE;	1017 02:1		<0.001	mg/kg		<0.001 r	ng/kg	<0.0000001 %	П	<lod< th=""></lod<>
		-	216-653-1	1634-04-4	+		. <del></del> 9			J. 19			
		'								Total:	0.0363 %	$\Box$	



CLP: Note 1 Only the metal concentration has been used for classification



Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
₫,	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	

Page 42 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





Classification of sample: WS103-1-25082021-0.20

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

Sample name: LoW Code:

WS103-1-25082021-0.20 Chapter:

from contaminated sites) Moisture content:

Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 11% (wet weight correction)

03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 11% Wet Weight Moisture Correction applied (MC)

#		Determinand  CLP index number	CLP Note	OCF 100G	User entered dat	a	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene 201-469-6 83-32-9			<0.05 mg	/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
2	0	acenaphthylene 205-917-1 208-96-8			<0.05 mg	/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
3	0	anthracene			<0.05 mg	/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		204-371-1 120-12-7				_					
4	æ\$	arsenic { arsenic trioxide } 033-003-00-0   215-481-4   1327-53-3			12 mg	/kg	1.32	14.101 mg/kg	0.00141 %	✓	
	H		-								
5		benzene 601-020-00-8   200-753-7   71-43-2			<0.001 mg	/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
6		benzo[a]anthracene			<0.05 mg	/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-033-00-9 200-280-6 56-55-3		-		. J					
7		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3	_		<0.05 mg	/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[b]fluoranthene									
8		601-034-00-4 205-911-9 205-99-2			<0.05 mg	/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[ghi]perylene									
9	"	205-883-8 191-24-2	_		<0.05 mg	/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
10	П	benzo[k]fluoranthene			<0.05 mg	/ka		<0.05 ma/ka	<0.000005 %		<lod< td=""></lod<>
10		601-036-00-5 205-916-6 207-08-9			<0.05 IIIg	/kg		<0.05 mg/kg	<0.000005 %		<lod td=""  <=""></lod>
11	æ.	beryllium { beryllium oxide }			0.89 mg	/ka	2.775	2.198 mg/kg	0.00022 %	<b>√</b>	
		004-003-00-8 215-133-1 1304-56-9				9				*	
12	₫.	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4, 10294-34-5, 7637-07-2			0.6 mg	/kg	13.43	7.172 mg/kg	0.000717 %	✓	
13	æ\$	cadmium { <mark>cadmium sulfide</mark> }	1	1	<0.2 mg	/ka	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
		048-010-00-4 215-147-8 1306-23-6				9					
14	<b>4</b>	chromium in chromium(III) compounds { chromium(II) oxide (worst case) }	l)		26 mg	/kg	1.462	33.82 mg/kg	0.00338 %	✓	
15	4	chromium in chromium(VI) compounds { chromium(VI) oxide }			<1.2 mg	/kg	1.923	<2.308 mg/kg	<0.000231 %		<lod< td=""></lod<>
16		chrysene			<0.05 mg	/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-048-00-0 205-923-4 218-01-9									



#			Determinand		CLP Note	User entered	d data	Conv. Factor	Compound c	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	LP.			i actor			value	MC A	Oseu
17	æ	copper { dicopper c	oxide; copper (I) oxide; 215-270-7	de }	Ĭ	27	mg/kg	1.126	27.055	mg/kg	0.00271 %	✓	
18	4	cyanides { salts exception of completerricyanides and magnetised elsewhere 006-007-00-5	ex cyanides such as nercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
19		dibenz[a,h]anthrace	ene 200-181-8	53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20	0	ethylbenzene	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
21	0	fluoranthene	205-912-4	206-44-0	T	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
22	0	fluorene	201-695-5	86-73-7	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23	0	indeno[123-cd]pyre		193-39-5		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
24	<b>4</b>	lead { lead compospecified elsewhere	oounds with the exc		1	31	mg/kg		27.59	mg/kg	0.00276 %	<b>✓</b>	
25	~	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7	1	<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
26		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
27			lroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		27	mg/kg	1.579	37.955	mg/kg	0.0038 %	✓	
28	0	pH		PH		8	рН		8	рН	8pH		
29	Θ	phenanthrene	201-581-5	85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
30	0	pyrene	204-927-3	129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
31	≪\$	selenium { selenium cadmium sulphose in this Annex }	n compounds with t lenide and those sp			<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
32		toluene 601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
33	0	TPH (C6 to C40) pe	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
34			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
35		zinc { zinc oxide } 030-013-00-7	215-222-5	1314-13-2		73	mg/kg	1.245	80.869	mg/kg	0.00809 %	✓	
36	0	monohydric phenol	s	P1186		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
37	vanadium { divanadium pentaoxide; vanadium pentoxide			}	32	mg/kg	1.785	50.842	mg/kg	0.00508 %	<b>√</b>		
38		tert-butyl methyl etl 2-methoxy-2-methy	her; MTBE;	1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		-10 101 00 A	0 000 1				l		Total:	0.03 %			

Page 44 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected



Classification of sample: WS103-4-25082021-1.00

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

LoW Code: Sample name:

WS103-4-25082021-1.00 Chapter: Moisture content:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry: 03)

(wet weight correction)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 16% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound or	onc.	Classification value	MC Applied	Conc. Not Used
1	9	acenaphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
			201-469-6	83-32-9					<u> </u>			Н	
2	Θ	acenaphthylene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-917-1	208-96-8								Н	
3	0	anthracene	004 074 4	400 40 7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	_			120-12-7								Н	
4	4	arsenic { arsenic tri 033-003-00-0	1	1207 52 2		14	mg/kg	1.32	15.527	mg/kg	0.00155 %	✓	
				1327-53-3								Н	
5		benzo[a]anthracene		FC FF 2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
				56-55-3								Н	
6		benzo[a]pyrene; be 601-032-00-3		50-32-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[b]fluoranther		00-32-0					<del></del>			Н	
7				205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	_	benzo[ghi]perylene		200-99-2					<del></del>			Н	
8	0			191-24-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[k]fluoranther		191-24-2									
9				207-08-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
				207-00-9								Н	
10	_			1304-56-9		1	mg/kg	2.775	2.331	mg/kg	0.000233 %	✓	
11	₫,	boron {	oromide/trichloride/t	rifluoride 10294-33-4, 10294-34-5,		0.2	mg/kg	13.43	2.256	mg/kg	0.000226 %	<b>√</b>	
				7637-07-2								Ш	
12	4	cadmium { cadmiur 048-010-00-4		1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
13	4	chromium in chrom oxide (worst case)	ium(III) compounds	{ • chromium(III)		42	mg/kg	1.462	51.564	mg/kg	0.00516 %	~	
				1308-38-9								Ш	
14		oxide }	ium(VI) compounds			<1.2	mg/kg	1.923	<2.308	mg/kg	<0.000231 %		<lod< td=""></lod<>
	Н		215-607-8	1333-82-0	$\vdash$								
15		chrysene 601-048-00-0	205-923-4	218-01-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
16		copper { dicopper o				13	ma/ka	1.126	12.295	mg/kg	0.00123 %		
	_	029-002-00-X	215-270-7	1317-39-1		13	my/kg	1.120	12.233	mg/kg	0.00123 /0	<b>√</b>	





#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
17		cyanides { salts of exception of complete ferricyanides and management of the specified elsewhere the specified elsewhere the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of the salts of	ex cyanides such as nercuric oxycyanide	ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
18		dibenz[a,h]anthrace	ene 200-181-8	53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
19	$\vdash$	fluoranthene		206-44-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20	0	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21	0	indeno[123-cd]pyre	ne 205-893-2	193-39-5		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
22		lead { lead compospecified elsewhere		eption of those	1	15	mg/kg		12.6	mg/kg	0.00126 %	<b>√</b>	
23	æ	mercury { mercury	dichloride }	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %	İ	<lod< td=""></lod<>
24		naphthalene	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
25	-		Iroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		29	mg/kg	1.579	38.477	mg/kg	0.00385 %	<b>√</b>	
26	9	рН		PH		7.8	рН		7.8	рН	7.8 pH		
27	0	phenanthrene	201-581-5	85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
28	8	pyrene	204-927-3	129-00-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
29	~	selenium { selenium cadmium sulphosel in this Annex }				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< th=""></lod<>
$\vdash$	$\vdash$	034-002-00-8										H	
30	-	zinc { zinc oxide } 030-013-00-7	215-222-5	1314-13-2		48	mg/kg	1.245	50.187	mg/kg	0.00502 %	✓	
31	0	monohydric phenol	s	P1186		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
32	_	vanadium { divanad	<mark>lium pentaoxide; va</mark> 215-239-8			49	mg/kg	1.785	73.478	mg/kg	0.00735 %	✓	
		023-001-00-0	Z 1 J-Z 3 3-0	1314-02-1	_				1	Total:	0.0267 %	H	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected





Classification of sample: BH104-1-20082021-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

Sample name: LoW Code:

BH104-1-20082021-0.50 Chapter: Moisture content:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 16% Entry: 03) (wet weight correction)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 16% Wet Weight Moisture Correction applied (MC)

#		Determinand  CLP index number		CLP Note	User entere	d data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used	
1		benzene 601-020-00-8	200-753-7	71-43-2	0	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	2	<lod< th=""></lod<>
2	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
3		toluene 601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
4	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
5			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
6		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X		1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		1		1						Total:	0.001 %		l.

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

<LOD Below limit of detection

ND Not detected

Page 48 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





#### Appendix A: Classifier defined and non CLP determinands

#### acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Aquatic Acute 1 H400, Aquatic Chronic 1 H410, Aquatic Chronic 2 H411

#### acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4 H302 , Acute Tox. 1 H330 , Acute Tox. 1 H310 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315

#### anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

#### benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

#### • boron tribromide/trichloride/trifluoride (combined) (CAS Number: 10294-33-4, 10294-34-5, 7637-07-2)

Description/Comments: Combines the hazard statements and the average of the conversion factors for boron tribromide, boron trichloride and boron

trifluoride

Data source: N/A

Data source date: 06 Aug 2015

Hazard Statements: EUH014, Acute Tox. 2 H330, Acute Tox. 2 H300, Skin Corr. 1A H314, Skin Corr. 1B H314

#### "chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4 H332 , Acute Tox. 4 H302 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Resp. Sens. 1 H334 , Skin Sens. 1 H317 , Repr. 1B H360FD , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

# salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP1)

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

# • fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4 H302 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

#### • fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

#### • indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351





#### lead compounds with the exception of those specified elsewhere in this Annex

CLP index number: 082-001-00-6

Description/Comments: Least-worst case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH

Consortium, following CLP protocols, considers many simple lead compounds to be Carcinogenic category 2

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium

www.reach-lead.eu/substanceinformation.html. Review date 29/09/2015

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Carc. 2 H351, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic

Chronic 1 H410, Skin Irrit. 2 H315

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2 H315, Eye Irrit. 2 H319, STOT SE 3 H335, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

#### monohydric phenols (CAS Number: P1186)

Description/Comments: Combined hazards statements from harmonised entries in CLP for phenol, cresols and xylenols (604-001-00-2, 604-004-00-9,

604-006-00-X)

Data source: CLP combined data Data source date: 26 Mar 2019

Hazard Statements: Acute Tox. 3 H301 , Acute Tox. 3 H311 , Acute Tox. 3 H331 , Skin Corr. 1B H314 , Skin Corr. 1B H314 >= 3 %, Skin Irrit. 2 H315 1 £

conc. < 3 %, Eye Irrit. 2 H319 1 £ conc. < 3 %, Muta. 2 H341 , STOT RE 2 H373 , Aquatic Chronic 2 H411

## magnesium phosphide; trimagnesium diphosphide (EC Number: 235-023-7, CAS Number: 12057-74-8)

CLP index number: 015-005-00-3

Description/Comments:

Data source: Commission Regulation (EU) No 944/2013 - 5th Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP5)

Additional Hazard Statement(s): Water-react. 1 H260 >= 0.3 %, EUH032 >= 0.3 %, EUH029 >= 0.3 %

Reason for additional Hazards Statement(s):

14 Dec 2015 - Water-react. 1 H260 >= 0.3 % hazard statement sourced from: WM3, Table C3.2

14 Dec 2015 - EUH032 >= 0.3 % hazard statement sourced from: WM3, Table C12.2

14 Dec 2015 - EUH029 >= 0.3 % hazard statement sourced from: WM3, Table C12.2

## ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Description/Comments:

Data source: Commission Regulation (EU) No 605/2014 - 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP6)

Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

#### • TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

 $Hazard\ Statements:\ Flam.\ Liq.\ 3\ H226\ ,\ Asp.\ Tox.\ 1\ H304\ ,\ STOT\ RE\ 2\ H373\ ,\ Muta.\ 1B\ H340\ ,\ Carc.\ 1B\ H350\ ,\ Repr.\ 2\ H361d\ ,\ Aquatic\ Chronic\ 2\ H361d\ ,\ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \ Application \$ 

H411

## Appendix B: Rationale for selection of metal species

#### arsenic {arsenic trioxide}

Worst case species based on hazard statements

Page 50 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com





beryllium {beryllium oxide}

Worst case species based on hazard statements

boron {boron tribromide/trichloride/trifluoride (combined)}

Worst case species based on hazard statements

cadmium {cadmium sulfide}

Worst case species based on hazard statements

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Worst case species based on hazard statements

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case species based on hazard statements

copper {dicopper oxide; copper (I) oxide}

Most likely common species

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Worst case species

lead {lead compounds with the exception of those specified elsewhere in this Annex}

Worst case species based on hazard statements

mercury {mercury dichloride}

Worst case species based on hazard statements

nickel {nickel dihydroxide}

Worst case species based on hazard statements

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Worst case species based on hazard statements

zinc {zinc oxide}

Worst case species based on hazard statements

vanadium {divanadium pentaoxide; vanadium pentoxide}

Worst case species based on hazard statements.

magnesium {magnesium phosphide; trimagnesium diphosphide}

Worst case species based on hazard statements.

**Appendix C: Version** 

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018

HazWasteOnline Classification Engine Version: 2021.246.4869.9247 (05 Sep 2021)

HazWasteOnline Database: 2021.246.4869.9247 (05 Sep 2021)





This classification utilises the following guidance and legislation:

WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

**14th ATP** - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2019 - UK: 2019 No. 720 of 27th March 2019

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

POPs Regulation 2019 - Regulation (EU) 2019/1021 of 20 June 2019

Page 52 of 52 TYWGY-GY7EZ-IP3YW www.hazwasteonline.com



**WAC** Data





**Rob Crookes** 

Hydrock Consultants Ltd 4 Lakeside Festival Park Stoke on Trent ST1 5RY

**t:** 01782 261919 **f:** 01782 262020

e: robcrookes@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

# **Analytical Report Number: 21-95910**

Project / Site name: Garth Wymott 2 Samples received on: 31/08/2021

Your job number: 19851 Samples instructed on/ 31/08/2021

Analysis started on:

Your order number: PO09538 Analysis completed by: 06/09/2021

Report Issue Number: 1 Report issued on: 06/09/2021

Samples Analysed: 2 10:1 WAC samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.





# i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		21-95910				
•						
				GI' · · · I	10/22001/	
				Client:	HYDROCK	
Location		Garth Wymott 2				
Lab Reference (Sample Number)		1000712 / 1000714		Landfill \	Waste Acceptanc	e Criteria
		1990713 / 1990714			Limits	
Sampling Date Sample ID		26/08/2021 BH107A 1			Stable Non- reactive	
Depth (m)		0.40	Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis						
ГОС (%)**	3.2			3%	5%	6%
oss on Ignition (%) **	8.7					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg) **	< 0.007			1		
Mineral Oil (mg/kg)	< 10			500		
Fotal PAH (WAC-17) (mg/kg)	3.34			100		
pH (units)**	8.1				>6	
Acid Neutralisation Capacity (mol / kg)	2.6				To be evaluated	To be evaluate
Eluate Analysis	10:1		10:1		es for compliance le	
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	0.0042		0.0357	0.5	2	25
Barium *	0.0293		0.246	20	100	300
Cadmium *	< 0.0001		< 0.0008	0.04	1	5
Chromium *	0.0012		0.010	0.5	10	70
Copper *	0.013		0.11	2	50	100
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2
Molybdenum *	0.0022		0.0185	0.5	10	30
Nickel *	0.0066		0.056	0.4	10	40
.ead *	0.0038		0.032	0.5	10	50
Antimony *	< 0.0017		< 0.017	0.06	0.7	5
Selenium *	< 0.0040		< 0.040	0.1	0.5	7
Zinc *	0.0071		0.059	4	50	200
Chloride *	2.5		21	800	15000	25000
Fluoride	1.1		9.2	10	150	500
Sulphate *  FDS*	8.9 94		75 790	1000 4000	20000 60000	50000 100000
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-
·						
OOC	16.2		136	500	800	1000
each Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	1.2					
Dry Matter (%)	88					
Moisture (%)	12			-		
					1	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.





# i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		21-95910				
				GI' · · · I	10/22001/	
				Client:	HYDROCK	
Location		Garth Wymott 2				
Lab Reference (Sample Number)		1000715 / 1000716		Landfill	Waste Acceptanc	e Criteria
		1990715 / 1990716			Limits Stable Non-	
Sampling Date Sample ID		27/08/2021 SA105 1			reactive	
Depth (m)		0.30-0.50	Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis						
ГОС (%)**	1.6			3%	5%	6%
Loss on Ignition (%) **	4.8					10%
BTEX (µg/kg) **	< 10			6000		
Sum of PCBs (mg/kg) **	< 0.007			1		
Mineral Oil (mg/kg)	< 10			500		
Total PAH (WAC-17) (mg/kg)	< 0.85			100		
pH (units)**	8.2				>6	
Acid Neutralisation Capacity (mol / kg)	3.6				To be evaluated	To be evaluated
Eluate Analysis	10:1		10:1		es for compliance le	
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		using BS EN 12457-2 at L/S 10 l/kg (mg/kg			
Arsenic *	0.0062		0.0500	0.5	2	25
Barium *	0.0296		0.238	20	100	300
Cadmium *	< 0.0001		< 0.0008	0.04	1	5
Chromium *	0.0014		0.011	0.5	10	70
Copper *	0.011		0.089	2	50	100
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2
Yolybdenum *	< 0.0004		< 0.0040	0.5	10	30
Nickel *	0.0086		0.070	0.4	10	40
Lead *	0.0053		0.043	0.5	10	50
Antimony *	< 0.0017		< 0.017	0.06	0.7	5
Selenium *	< 0.0040		< 0.040	0.1	0.5	7
Zinc *	0.033		0.27	4	50	200
Chloride *	2.3		19	800	15000	25000
Fluoride	0.47		3.7	10	150	500
Sulphate *	7.2		58	1000	20000	50000
TDS*	64		510	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1		
DOC	15.7		126	500	800	1000
Leach Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	2.0					
Ory Matter (%)	90					
Moisture (%)	9.8					
				*= UKAS accredit		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.





## Analytical Report Number : 21-95910 Project / Site name: Garth Wymott 2

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1990713	BH107A	1	0.4	Brown loam and clay with gravel and vegetation.
1990715	SA105	1	0.30-0.50	Brown clay and loam with gravel and vegetation.





Analytical Report Number : 21-95910 Project / Site name: Garth Wymott 2

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance""	L046-PL	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by EC probe using a factor of 0.6.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025





Analytical Report Number : 21-95910 Project / Site name: Garth Wymott 2

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.



## Appendix G Preliminary Geotechnical Risk Register



#### Geotechnical Hazard Identification – Desk Study Stage

Potential geotechnical hazards have been assessed in accordance with the general requirements of ICE/DETR Document 'Managing Geotechnical Risk' and the HE documents HD 41/15 and CD 622. The following pages set out the identified geotechnical risks and hazards which are associated with the proposed development and establish the approach which is to be taken to manage the risks including the geotechnical input and analysis.

Table J.1 is a preliminary assessment of possible geotechnical hazards at the site at Desk Study stage. This information is used to assist with ground investigation design.

Table J.1: Possible geotechnical hazards

Hazard	Comment		Hazard status based on desk study		
		Could be present and / or affect site (i.e. Plausible)	Unlikely to be present and/or affect site		
Uncontrolled Made Ground (variable strength and compressibility).	Associated with infilled pond and former buildings.	<b>~</b>	-		
Soft / loose compressible ground (low strength and high settlement potential).	Associated with organic backfill within infilled pond.	<b>~</b>	-		
Shrink swell of the clay fraction of soils under the influence of vegetation.	Clay soils underlie the site and mature trees present onsite.	<b>~</b>	-		
Variable lateral and vertical changes in ground conditions.	Potential for within heterogenous Made Ground.	<b>~</b>	-		
High sulphates present in the soils.	Made Ground present across the site may contain elevated sulphates.	<b>~</b>	-		
Adverse chemical ground conditions, (e.g. expansive slag).	Unlikely to be present.	-	<b>✓</b>		
Obstructions.	Associated with former buildings.	<b>~</b>	-		
Existing below ground structures to remain (existing prison fence line).	Perimeter fence to remain with development in close proximity.	<b>~</b>	-		
Shallow groundwater.	Potential for shallow perched water which	<b>~</b>	-		
Changing groundwater conditions.	may vary in depth seasonally.	✓	-		
Risk from erosion.	Unlikely to be present.	-	<b>~</b>		
Risk from flooding.	A flood zone 3 encroaches onto the west of the site.	<b>~</b>	-		
Loose Made Ground, leading to difficulty with excavation and collapse of side walls.	Granular Made Ground may be loosely compacted.	<b>~</b>	-		
Slope stability issues – general slopes.	Unlikely to be present.	-	<b>~</b>		
Slope stability issues – retaining walls.	Unlikely to be present.	-	<b>~</b>		



Hazard	Comment	Hazard status based on desk study		
		Could be present and / or affect site (i.e. Plausible)	Unlikely to be present and/or affect site	
Earthworks – settlement (due to placement of fill on soft / loose ground).	Unlikely to be present.	-	<b>✓</b>	
Earthworks – poor bearing capacity of new fill.	Unlikely to be present.	-	<b>✓</b>	
Earthworks – unsuitability of site won material to be reused as fill.	Unlikely to be present.	-	<b>✓</b>	
Solution features in Chalk.	Unlikely to be present.	-	<b>~</b>	
Cavities in the Superficial Deposits due to solution features.	Unlikely to be present.	-	<b>~</b>	
Dissolution (associated with "wet rock head").	Unlikely to be present.	-	<b>~</b>	
Brine extraction.	Unlikely to be present.	-	<b>~</b>	
Mining.	Unlikely to be present.	-	<b>~</b>	
Cambered ground with gulls possibly present.	Unlikely to be present.	-	<b>✓</b>	
Relict Slip Surfaces.	Unlikely to be present.	-	<b>~</b>	
Solifluction.	Unlikely to be present.	-	<b>~</b>	
Problematic soils (silts and rewetting etc.).	Unlikely to be present.	-	<b>~</b>	



Geotechnical Hazard Identification – Following Ground Investigation

The preliminary Geotechnical Risk Register following Ground Investigation is set out in Table J.3.

The probability and impact of a hazard have been judged on a qualitative scale as set out in Table J.2. The degree of risk (R) is determined by combining tan assessment of the probability (P) of the hazard occurring with an assessment of the impact (I) of the hazard and associated mitigation it will require if it occurs (R = P x I).

Table J.2: Qualitative assessment of hazards and risks

P = Probability		I = Impact		R = Risk Rating (P	x I)
1	Very unlikely (VU)	1	Very Low	1 - 4	None / negligible
2	Unlikely (U)	2	Low	5 – 9	Minor
3	Plausible (P)	3	Medium	10 - 14	Moderate
4	Likely (Lk)	4	High	15 – 19	Substantial
5	Very Likely (VLk)	5	Very High	20 - 25	Severe



Hazard	Comments	Who is at Risk	Consequence		Befor		Actions Required
падаги	Comments	WIIO IS at NISK	Consequence		_	R	Actions required
	Deep Made Ground >3.45m present	Prison Blocks	Bearing capacity failure, settlement (total and differential).	3	4	12	Design foundations to found below Made Ground or base of backfilled pond.
	adjacent to the		Floor slab failure.	3	4	12	Design floor slabs as suspended.
Uncontrolled Made Ground	existing boiler house.  Deep Made Ground  present in the north  associated with the	Roads and Pavements.	Settlement (total and differential) of roads and pavements.	3	2	6	Design roads and pavements using suitable geotechnical parameters and increase the sub-base and use geo-grids as appropriate.  If anticipated settlements are significant, and cannot be mitigated by design, over-excavate and replace soft soils.
(variable strength and	backfilled pond and in the east associated with former	Services.	Settlement (differential), causing damage to services.	2	2	4	Settlements are not anticipated to be significant with regard to services. No additional design requirements envisaged.
compressibility).	construction. Some peaty clays present within the backfilled pond which could be subject to secondary consolidation.	Landscaped areas	Settlement (differential), in gardens.	2	2	4	It is unlikely that settlements will be significant with regard to landscaped areas.
		Construction staff, vehicles and plant operators.	Trafficking of the site in temporary conditions. Overturning of plant during construction.	3	3	9	Where soft spots encountered, over-excavation and replacement with suitable fill.  Outline design of working platform to include geo-grid.  Site inspection and watching brief by Contractor to review working platform frequently and regularly.
Shrinkage / swelling of the clay	The clays of the Head and Glacial Till are medium heave	Foundations.	Shrinkage or heave of soils and associated damage to foundations.	4	3	12	Design foundations in accordance with BRE Digest 240.  Deepen foundations due to trees as appropriate.
fraction of soils under the influence of vegetation.		Floor slabs.	Floor slab failure.	3	4	12	Design floor slabs in accordance with BRE Digest 240.  Design floor slab as suspended with a void, unless the warranty provider is satisfied the soil is not desiccated, or slabs are constructed when soils are not seasonally desiccated (i.e. during winter and spring).



Hazard	Comments	Who is at Risk			Risk Before Mitigation		Actions Required
				P I R		R	
		Prison Blocks	Foundation bearing capacity failure, settlement (total and differential).	3	4	12	Design foundations to found below Made Ground or base of backfilled pond or softer/firmer head deposits for heavier loaded structures.
			Floor slab failure.	3	4	12	Design floor slab as suspended.
Variable lateral and	The Made Ground soils vary laterally and vertically, both in composition and	Roads and Pavements.	Settlement (total and differential), of roads and pavements.	3	2	6	Design roads and pavements using suitable geotechnical parameters and increase the sub-base and use geo-grids as appropriate.  If anticipated settlements are significant, and cannot be mitigated by design, over-excavate and replace unsuitable soils.
vertical changes in ground conditions strength. The Hei	strength. The Head Deposits vary vertically with some firmer clays	Services.	Settlement (differential), causing damage to services.	2	2	4	Settlements are not anticipated to be significant with regard to services. No additional design requirements envisaged.
	underlying stiff clay or horizons of sands or	Landscaped areas	Settlement (differential), in gardens.	2	2	4	It is unlikely that settlements will be significant with regard to landscaped areas.
	silty clays.	Construction staff, vehicles and plant operators.	Trafficking of the site in temporary conditions. Overturning of plant during construction.	3	3	9	Where soft spots encountered, over-excavate and replace with suitable fill.  Design working platform to suit the ground conditions.  Outline design of working platform to include geo-grid if necessary.  Site inspection and watching brief by Contractor to review working platform frequently and regularly.
	The ground investigation has	Attack of buried concrete.	Damage to concrete and reduction in strength.	3	4	12	Classify concrete in accordance with BRE SD1 and design concrete accordingly.
Sulphates present in the soils.	proven that there is the potential for expansive sulphate bearing soils to be present. Head deposits classified as DS-2 AC-2.	Earthworks.	Sulphate heave following the use of hydraulic binders.	2	4	8	Supplementary sulphate testing in accordance with BRE guidelines to be undertaken during earthworks.  Before the use of hydraulic binders is approved, comprehensive testing and design will need to be completed by a Specialist Contractor to satisfy both themselves and the Engineer of the suitability of the soils for treatment, and confirm that the requisite end-performance of the material is achievable.



Hazard	Comments	Who is at Risk	Consequence		Befor	_	Actions Required			
Tiazaru	Comments	WIIO IS at MISK	consequence	Р	~	R	Actions Required			
	Obstructions have been proven by the investigation and there	Construction staff, vehicles and plant operators.	Risk of collapse of excavation as obstructions are pulled out.	3	4	12				
Obstructions.	is a potential for additional obstructions	Roads and Pavements.	Hard spots in externals and roads / pavements.	2	2	4	Undertake Enablement Works and remove all obstructions.  Allow for a breaker to be present during construction and remove			
activity, or unknov	historical construction activity, or unknown fill in Made Ground.	Prison Blocks	Impact on piling, resulting in additional piles and re-design of foundations.	3	3	9	obstructions were encountered during construction.			
Existing below ground structures to remain (prison fence line).	Development will take place close to the existing prison perimeter fence line.	Fence line	Foundation bearing capacity failure, settlement (differential).	3	4	12	Design to be undertaken in accordance with EC7. Contractor to appoint competent Temporary Works Designer to design temporary works, in accordance with BS 5975:2008+A1:2011. Temporary Works Design to include recommendations for inspection of excavations. No person entry to unsupported excavations.			
Shallow	Monitoring during the ground investigations has proven a shallow localised perched	Construction staff, vehicles	Difficulty with excavation.				Contractor to appoint competent Temporary Works Designer to design temporary works, in accordance with BS 5975:2008+A1:2011. Temporary Works Designer to consider in their analysis the impact of,			
groundwater.	groundwater table. Post fieldwork monitoring recorded groundwater up to 0.40m bgl.	and plant operators.  Limit state failure, excessive deformation, trafficking of site plant, inability to place and compact fill.		3	2	6	and requirements for, de-watering of excavations.  Any water that collects at the base of excavations to be removed as soon as practicable.			



Hazard	Comments	Who is at Risk Consequence		Risk Before Mitigation			Actions Required	
				Р	1	R		
Subject to risk from flooding.	The west of the site lies within a Flood Zone 3 associated with Wymott Brook.	West of the development.	Damage to prison blocks, landscaping areas, roads and services.	3	4	12	The site is partially located within a Flood Zone 3, and as such is at risk of flooding.  The planning of the site needs to take into account the risk of flooding.  Existing flood defences should be inspected and if necessary updated or replaced.	
Unforeseen ground conditions - risk associated with limited data.	Ground investigation has been undertaken. However, additional information will be obtained during construction. Ground conditions are only defined at exploratory hole locations.	All aspects of th	ne development	3	4	12	Designers to be contacted if conditions encountered are different to those identified during investigation.  Regular inspections of excavations and earthworks for evidence of stability.  Adequate investigation required to characterise the site and understand the potential risks.	

Whilst the probability and impact of the hazard occurring can be reduced to a minimum by geotechnical design, the impact cannot be reduced below very low. The risk register will need to be up-dated, as necessary, to reflect design, additional information, data and experience as it is gained through the construction process.

Impacts of the design with regard to health and Safety considerations will need to be included by the designer at design stage.



# Appendix H Plausible Source-Pathway-Receptor Contaminant Linkages



#### Summary of Potential Contaminant Linkages

Table K.2 lists the plausible contaminant linkages which have been identified. These are considered as potentially unacceptable risks in line with guidelines published in LCRM (2019) and additional risk assessment is required.

Source – Pathway – Receptor Linkages have been assessed in general accordance with guidance in CIRIA Report C552 (Rudland et al 2001) but modified to add a 'no linkage' category and to remove low/moderate risk (See Table K.1). Further information is given in the relevant Hydrock methodology, referenced in Appendix I, including descriptions of typical examples of probability and consequences.

It should be noted that whilst the risk assessment process undertaken in this report may identify potential risks to site demolition and redevelopment workers, consideration of occupational health and safety issues is beyond the scope of this report and need to be considered separately in the Construction Phase Health and Safety Plan.

Table K.1: Consequence versus probability assessment.

		Consequence			
		Severe	Medium	Mild	Minor
	High Likelihood	Very high risk	High risk	Moderate risk	Low risk
	Likely	High risk	Moderate risk	Low risk	Very low risk
	Low Likelihood	Moderate risk	Low risk	Low risk	Very low risk
billity	Unlikely	Low risk	Very low risk	Very low risk	Very low risk
Probability	No Linkage	No risk			



Table K.2: Exposure model – final source-pathway-receptor contaminant linkages

Sources	Possible Pathways	Receptors	Probability	Consequence	Risk Level	Comments
PAH hotspots within the Made Ground.	Ingestion, inhalation or direct contact.	Site users.	Likely	Medium	Moderate	Shallow hotspots for PAHs (CBR101, WS111E, WS118E and WS123e) were encountered within the Made Ground. Mitigation measures required in the form of excavation, disposal and removal.
Hotspot of petroleum hydrocarbons within WS106E between 0.80m and 1.00m bgl.	Ingestion, inhalation or direct contact.	Site users.	Likely	Medium	Moderate	Localised hotspot for petroleum hydrocarbons at WS106E between 0.80m and 1.00m bgl. Mitigation measures required in the form of excavation, disposal and removal.
		Site users.	Likely	Severe	High	Localised hard/cement type asbestos was encountered within the Made Ground and on the surface east of the existing pavilion. As part of the enabling works any visible
Asbestos-containing materials in the Made Ground and at the surface.	Inhalation of fugitive dust.	Neighbours	Unlikely	Severe	Low	asbestos containing materials will require hand picking. The risk of significant generation of dust is likely only during site development process and can therefore be controlled. Suppression should be included in control measures. There is ACM present on site, so works to be undertaken in accordance with CAR 2012.
Asbestos fibres from insulation or	Inhalation of fugitive dust	Site users	Likely	Severe	High	Asbestos may be present in existing buildings and in Made Ground.
asbestos-containing materials in the buildings.	Inhalation of fugitive dust.	Neighbours.	Unlikely	Severe	Low	Careful removal will be required from buildings during demolition. However, removal under controlled conditions should limit release of fibres to the air and the ground.



Sources	Possible Pathways	Receptors	Probability	Consequence	Risk Level	Comments
Unforeseen contamination below the existing farm Inge	Ingestion, inhalation or direct	Site users.	Likely	Medium	Moderate	Farm and prison buildings are present onsite and the ground investigation was unable to target these specific areas. Post demolition it recommended that ground investigation is undertaken within these areas to confirm no active
buildings and those associated with the prison.	contact.	Neighbours	Unlikely	Severe	Low	pathways are present. In particularly investigation should target areas of fuel or machinery store within the farm buildings. Further risk assessment required post supplementary ground investigation.
TPH within shallow soils.	Direct contact	Site users.	Likely	Medium	Moderate	Localised areas in which hydrocarbon fractions exceeded the PE threshold. Subject to discussions with utility providers there may be a requirement for installation of "Protectaline" (or similar) pipework in specific areas of the site.
Bituminous bound hardstanding potentially containing coal tar.	Ingestion, inhalation or direct contact	Site users.	Likely	Medium	Moderate	Further investigation required to confirm classification of hardstanding for waste disposal especially within the existing prison car parks which are to be redeveloped.



### Appendix I

### Hydrock Methodologies

This report uses Hydrock Desk Study and Ground Investigation template V47.1.

This appendix provides additional background information on certain approaches and methods used by Hydrock Consultants Limited in the preparation of this report.

The following Hydrock Methodologies apply to this report. These are not included, but are available on request by quoting the methodology reference, revision and date.

Reference	Name	Revision	Date
001	Desk Study	001	30/07/2018
002	Ground Investigation	001	30/07/2018
003	Preliminary Geo-environmental Risk Assessment Rationale	001	30/07/2018
004	Preliminary geotechnical Risk Register	001	30/07/2018
005	Generic Risk Assessment for Human Health (Soils)	001	30/07/2018
006	Generic Risk Assessment for Pollution of Controlled Waters	001	30/07/2018
008	Generic Risk Assessment for Risk to Plants	001	30/07/2018
009	Generic Risk Assessment for Water Supply Pipes	001	30/07/2018
010	Generic Ground Gas Risk Assessment	001	30/07/2018
011	Determination of Contaminated Land Under Part 2A of the Environmental Protection Act 1990	001	30/07/2018
012	Waste Management	001	30/07/2018
013	Materials Management	001	30/07/2018
014	Asbestos in Soils	001	30/07/2018
015	Remediation and Mitigation (New Methodology)	001	30/07/2018
016	Geotechnical Categorization and Characteristic Design Values	001	30/07/2018
017	Foundation and Floor Slab Recommendations - Residential	001	30/07/2018
018	Foundation and Floor Slab Recommendations – Commercial / Distribution	001	30/07/2018
019	Earthworks Suitability Recommendations	001	30/07/2018
020	Pavements and Pavement Foundations	001	30/07/2018
023	Sulphate Recommendations	001	30/07/2018